

Global-scale distribution of ozone in the remote troposphere from

ATom and HIPPO airborne field missions.

Ilann Bourgeois^{1,2}, Jeffrey Peischl^{1,2}, Chelsea R. Thompson^{1,2}, Kenneth C. Aikin^{1,2}, Teresa Campos³, Hannah Clark⁴, Róisín Commane⁵, Bruce Daube⁶, Glenn W. Diskin⁷, James W. Elkins⁸, Ru-Shan Gao², Audrey Gaudel^{1,2}, Eric J. Hintsa^{1,8}, Bryan J. Johnson⁸, Rigel Kivi⁹, Kathryn McKain^{1,8}, Fred L. Moore^{1,8}, David D. Parrish^{1,2}, Richard Querel¹⁰, Eric Ray^{1,2}, Ricardo Sánchez¹¹, Colm Sweeney⁷, David W. Tarasick¹², Anne M. Thompson¹³, Valérie Thouret¹⁴, Jacquelyn C. Witte³, Steve C. Wofsy⁶, and Thomas B. Ryerson².

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA ²NOAA CSL, Boulder, CO, USA ³National Center for Atmospheric Research, Boulder, CO, USA ⁴IAGOS-AISBL, Brussels, Belgium ⁵Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory of Columbia University, New York, NY, USA ⁶School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA ⁷NASA Langley Research Center, Hampton, VA, USA ⁸NOAA GML, Boulder, CO, USA ⁹Finnish Meteorological Institute, Space and Earth Observation Centre, Sodankylä, Finland ¹⁰National Institute of Water & Atmospheric Research (NIWA), Lauder, NZ ¹¹Servicio Meteorológico Nacional, Buenos Aires, Argentina ¹²Experimental Studies Research Division, MSC/Environment and Climate Change Canada, Downsview, Ontario, CA ¹³Earth Sciences Division, NASA/Goddard Space Flight Center, Greenbelt, MD, USA ¹⁴Laboratoire d'Aérologie, CNRS and Université Paul Sabatier, Université de Toulouse,

Toulouse, FR

1 Abstract

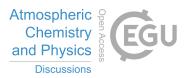
1	Abstract
2	Ozone is a key constituent of the troposphere where it drives photochemical
3	processes, impacts air quality, and acts as a climate forcer. Large-scale in situ observations of
4	ozone commensurate with the grid resolution of current Earth system models are necessary to
5	validate model outputs and satellite retrievals. In this paper, we examine measurements from
6	the Atmospheric Tomography (ATom, 4 deployments in 2016-2018) and the HIAPER Pole-
7	to-Pole Observations (HIPPO; 5 deployments in 2009-2011) experiments, two global-scale
8	airborne campaigns covering the Pacific (HIPPO and ATom) and Atlantic (ATom) basins.
9	ATom and HIPPO represent the first global-scale, vertically resolved measurements
10	of O ₃ distributions throughout the troposphere, with HIPPO sampling the Pacific basin and
11	ATom sampling both the Pacific and Atlantic basins. Given the relatively limited temporal
12	resolution of these two campaigns, we first compare ATom and HIPPO ozone data to longer-
13	term observational records to establish the representativeness of our dataset. We show that
14	these two airborne campaigns captured on average 53, 54, and 38 % of the ozone variability
15	in the marine boundary layer, free troposphere, and upper troposphere/lower stratosphere
16	(UTLS), respectively, at nine well-established ozonesonde sites. Additionally, ATom
17	captured the most frequent ozone concentrations measured by regular commercial aircraft
18	flights in the northern Atlantic UTLS. We then use the repeated vertical profiles carried out
19	during these two campaigns to provide a global-scale picture of tropospheric ozone spatial
20	and vertical distributions throughout the remote troposphere. We highlight a clear
21	hemispheric gradient, with greater ozone in the northern hemisphere consistent with greater
22	precursor emissions. We also show that the ozone distribution below 8 km was similar in the
23	extra-tropics of the Atlantic and Pacific basins due to zonal circulation patterns. However,
24	twice as much ozone was found in the tropical Atlantic than in the tropical Pacific, due to
25	well-documented dynamical patterns transporting continental air masses over the Atlantic.
26	We finally show that the seasonal variability of tropospheric ozone over the Pacific and the
27	Atlantic basins is driven by transported continental plumes and photochemistry, and the
28	vertical distribution is driven by photochemistry and mixing with stratospheric air. This new
29	dataset is essential for improving our understanding of both ozone production and loss
30	processes in remote regions, as well as the influence of anthropogenic emissions on baseline
31	ozone.
32	

33

34 **1. Introduction**

35	Tropospheric ozone (O ₃) plays a major role in local, regional, and global air quality and
36	significantly influences Earth's radiative budget (IPCC, 2013; Shindell et al., 2012). In addition,
37	O ₃ drives tropospheric photochemical processes by controlling hydroxyl radical (OH)
38	abundance, which subsequently controls the lifetime of other pollutants including volatile
39	organic compounds (VOCs), greenhouse gases, and some stratospheric ozone-depleting
40	substances (Crutzen, 1974; Levy, 1971). Sources of O3 to the troposphere include downward
41	transport from the stratosphere (Junge, 1962) and photochemical production from precursors
42	such as carbon monoxide (CO), methane (CH ₄), and VOCs in the presence of nitrogen oxides
43	(NO _x) emitted by natural or anthropogenic sources (Monks et al., 2009). Tropospheric O ₃ sinks
44	include photo-dissociation, chemical reactions, and dry deposition. Owing to its relatively long
45	lifetime (~23 days in the troposphere; Young et al., 2013), O ₃ can be transported across intra-
46	hemispheric scales. O3 mixing ratios over a region thus depend not only on local and regional
47	sources and sinks, but also on long-range transport. Further, the uneven density of O3 monitoring
48	locations around the globe leads to significant sampling gaps, especially near developing nations
49	(Gaudel et al., 2018). The troposphere over the remote oceans is among the least-sampled
50	regions, despite hosting 60–70 % of global tropospheric O ₃ burden (Holmes et al., 2013). Since
51	the early 1980's, several aircraft campaigns have periodically addressed this paucity of remote
52	observations, most notably under the umbrella of the Global Tropospheric Experiment (GTE), a
53	major component of the National Aeronautics and Space Administration (NASA) Tropospheric
54	Chemistry Program (<u>https://eosweb.larc.nasa.gov/project/gte/gte_table</u>).
55	Continuing this tradition, the Atmospheric Tomography mission (ATom,
56	https://espo.nasa.gov/atom) was a NASA Earth Venture airborne field project to address the
57	sparseness of atmospheric observations over remote ocean regions by systematically sampling
58	the troposphere over the Pacific and Atlantic basins along a global-scale circuit (Fig. 1). ATom
59	deployed an extensive payload on the NASA DC-8 aircraft, measuring a wide range of chemical,
60	microphysical, and meteorological parameters in repeated vertical profiles from 0.2 km to over
61	13 km altitude, from the Arctic to the Antarctic over the Pacific and Atlantic Oceans, in four
62	separate seasons from 2016 to 2018. One of the main goals of ATom was to develop an
63	observation-based climatology of the composition of the remote atmosphere using airborne in
64	situ measurements from global-scale sampling flights.

65 ATom built on a previous study, the HIAPER Pole-to-Pole Observations mission 66 (HIPPO, https://www.eol.ucar.edu/field_projects/hippo). The goal of HIPPO was to measure 67 atmospheric distributions of important greenhouse gases and reactive species over the Pacific 68 Ocean, from the surface to the tropopause, five times during different seasons from 2009 to 2011. Together, ATom and HIPPO provide unique information about the altitudinal and 69 70 latitudinal composition of the remote troposphere over the Pacific, and over the Atlantic for 71 ATom. 72 Here we use existing ozonesonde and commercial aircraft observations of O3 at selected 73 locations along the ATom and HIPPO circuits to provide a climatological context for the 74 altitudinal, latitudinal, and seasonal distributions of O₃ derived from the systematic airborne in 75 situ "snapshots". Long-term O₃ observations are obtained from decades of ozonesonde vertical 76 profiles (e.g., Oltmans et al., 2013; Thompson et al., 2017) and from ~60,000 flights using the 77 In-service Aircraft for a Global Observing System (IAGOS) infrastructure (Petzold et al., 2015; 78 http://www.iagos.org). Ozonesondes have typically been launched weekly for two decades or 79 more, depending on the site, and have sampled a wide range of air masses across the globe, from 80 O₃-poor remote surface locations to the O₃-rich stratosphere. IAGOS commercial aircraft have provided daily measurements in the upper troposphere and lower stratosphere (UTLS) for the 81 82 past 25 years, especially over the northern midlatitudes between America and Europe. 83 Combined, the ozonesonde and IAGOS datasets offer robust measurement-based climatologies 84 that quantify the full expected range of atmospheric O_3 variability with altitude and season. 85 The in-situ data from temporally-limited intensive field studies can be placed in context by comparing them with long-term ozonesonde and commercial aircraft monitoring data. We 86 87 show that ATom and HIPPO measurements capture the spatial and, in some cases, the temporal 88 dependence of O_3 in the remote atmosphere. Then, we use the geographically extensive ATom 89 and HIPPO vertical profile data to establish a more complete measurement-based benchmark for 90 O₃ abundance and distribution in the remote marine atmosphere. 91 92 2. Measurements 93 2.1 ATom 94 The four ATom circuits occurred in July–August 2016 (ATom-1), January–February 95 2017 (ATom-2), September-October 2017 (ATom-3), and April-May 2018 (ATom-4), thus


4–52

96 spanning all four seasons in both hemispheres over a two-year timeframe (Table S1). The 97 mission in total consisted of 48 science flights and 548 vertical profiles distributed nearly equally 98 along the global circuit. All four deployments completed roughly the same loop, starting and 99 ending in Palmdale, California, USA (Fig. 1). A notable addition during ATom-3 and -4 were 100 out-and-back flights from Punta Arenas, Chile to sample the Antarctic troposphere and UTLS. 101 O₃ was measured using the National Oceanic and Atmospheric Administration (NOAA) 102 nitrogen oxides and ozone (NO_yO_3) instrument. The O_3 channel of the NO_yO_3 instrument is 103 based on the gas-phase chemiluminescence (CL) detection of ambient O₃ with pure NO added as 104 a reagent gas (Ridley et al., 1992; Stedman et al., 1972). Ambient air is continuously sampled 105 from a pressure-building ducted aircraft inlet into the NO_vO_3 instrument at a typical flow rate of 106 1025.0 ± 0.2 standard cubic centimeters per minute (sccm) in flight. Pure NO reagent gas flow 107 delivered at 3.450 ± 0.006 sccm is mixed with sampled air in a pressure (8.00 ± 0.08 Torr) and 108 temperature (24.96 \pm 0.01 °C) controlled reaction vessel. NO-induced CL is detected with a dry-109 ice-cooled, red-sensitive photomultiplier tube and the amplified digitized signal recorded using 110 an 80 MHz counter; pulse coincidence corrections at high count rates were applied, but are 111 negligible for the data presented in this work. The instrument sensitivity for measuring O₃ under 112 these conditions is 3150 ± 80 counts per second per part per billion by volume (ppbv) averaged 113 over the entire ATom circuit. CL detector calibrations were routinely performed both on the 114 ground and during flight by standard addition of O₃ produced by irradiating ultrapure air with 115 185 nm UV light and independently measured using UV optical absorption at 254 nm. All O₃ 116 measurements were taken at a temporal resolution of 10 Hz, averaged to 1 Hz, and corrected for 117 the dependence of instrument sensitivity on ambient water vapor content (Ridley et al., 1992). 118 Under these conditions the total estimated 1 Hz uncertainty at sea level is $\pm (0.015 \text{ ppbv} + 2 \%)$. 119 A commercial dual-beam photometer (2B Technologies model 211) based on UV optical 120 absorption at 254 nm also measured O_3 on ATom, with an estimated uncertainty of \pm (1.5 ppbv + 121 1 %) at a 2-second sampling resolution. Comparison of the 2B absorption instrument O_3 data to 122 the NO_yO₃ CL instrument O₃ data agreed to within combined instrumental uncertainties, lending 123 additional confidence to the NO_vO₃ CL instrument calibration. For the ATom project we use 124 NO_vO₃ instrument O₃ data in the following analyses. 125 Data from two CO measurements were combined in this analysis. The Harvard quantum 126 cascade laser spectrometer (QCLS) instrument used a pulsed quantum cascade laser tuned at

127	\sim 2160 cm ⁻¹ to measure the absorption of CO through an astigmatic multi-pass sample cell with
128	76 m path length and detection using a liquid-nitrogen-cooled HgCdTe detector (Santoni et al.,
129	2014). In-flight calibrations were conducted with gases traceable to the NOAA World
130	Meteorological Organization (WMO) X2014A scale, and the QCLS observations have an
131	accuracy and precision of 3.5 and 0.15 ppb for 1 Hz data, respectively. CO was also measured by
132	the NOAA cavity ring-down spectrometer (CRDS, Picarro, Inc., model G2401-m) in the 1.57
133	μ m region with a total uncertainty of 5.0 ppbv for 1 Hz data (Karion et al., 2013). The NOAA
134	Picarro was also calibrated to the NOAA CO-X2014A scale. The combined CO data (CO-X)
135	used here corresponds to the QCLS data, with the Picarro measurement used to fill calibration
136	gaps in the QCLS time series.
137	Water (H ₂ O) vapor was measured using the NASA Langley Diode Laser Hygrometer
138	(DLH), an open-path infrared absorption spectrometer that uses a laser locked to a water vapor
139	absorption feature at ~1.395 $\mu m.$ Raw data are processed at the instrument's native ~100 Hz
140	acquisition rate and averaged to 1 Hz with an overall measurement accuracy within 5 %.
141	
142	2.2 <u>HIPPO</u>
143	The HIPPO mission consisted of five seasonal deployments over the Pacific basin
144	between 2009 and 2011, from the North Pole to the coastal waters of Antarctica (Wofsy, 2011).
145	HIPPO deployments consisted of two transects, southbound and northbound, and occurred in
146	January 2009 (HIPPO-1), October-November 2009 (HIPPO-2), March-April 2010 (HIPPO-3),
147	June–July 2011 (HIPPO-4) and August–September 2011 (HIPPO-5). The platform used was the
148	NSF Gulfstream V (GV) aircraft. More details can be found in Table S1.
149	A NOAA custom-built dual-beam photometer based on UV optical absorption at 254 nm
150	was used to measure O_3 (Proffitt and McLaughlin, 1983). The uncertainty of the 1 Hz O_3 data is
151	estimated to be \pm (1 ppbv + 5 %) for 1 Hz data. A commercial dual-beam O ₃ photometer (2B
152	Technologies model 205) based on UV optical absorption at 254 nm was also included in the
153	HIPPO payload. Comparison of the 2B O_3 data to the NOAA O_3 data showed general agreement
154	within combined instrument uncertainties on level flight legs. For the HIPPO project we use
155	NOAA O ₃ data in the following analyses.
156	Data from two CO measurements were combined in this analysis. The QCLS instrument
157	was the same instrument as used during ATom and described in section 2.1. CO was also

158	measured by an Aero-Laser AL5002 instrument using vacuum UV resonance fluorescence (in
159	the 170–200 nm range) instrument with an uncertainty of \pm (2 ppbv + 3 %) at a 2-second
160	sampling resolution. The combined CO data (CO-X) used here corresponds to the QCLS data,
161	with the Aero-Laser measurement used to fill calibration gaps in the QCLS time series.
162	
163	2.3 <u>IAGOS</u>
164	IAGOS is a European Research Infrastructure that provides airborne in situ chemical,
165	aerosol, and meteorological measurements using commercial aircraft (Petzold et al., 2015). The
166	IAGOS Research Infrastructure includes data from both the CARIBIC (Civil Aircraft for the
167	Regular Investigation of the atmosphere Based on an Instrument Container; Brenninkmeijer et
168	al., 2007) and MOZAIC (Measurements of OZone and water vapor by Airbus In-service
169	airCraft; Marenco et al., 1998) programs, providing measurements from ~60,000 flights since
170	1994. We note the relative lack of IAGOS data over the Pacific compared to the Atlantic (shorter
171	temporal record, lower flight frequency, and much fewer flights with concomitant O3 and CO
172	measurements), and therefore limited the comparison to the Atlantic. Because commercial
173	aircraft cruise altitudes over the ocean are predominantly between 9 and 12 km, the comparison
174	between ATom and IAGOS is further limited to the UTLS (Fig. 1). More details are shown in
175	Table S1.
176	Identical dual-beam UV absorption photometers measured O3 aboard the IAGOS flights.
177	An instrument comparison demonstrated that the photometers (standard model 49, Thermo
178	Scientific, modified for aircraft use) showed good consistency in measuring O ₃ following an
179	inter-comparison experiment (Nédélec et al., 2015). The associated uncertainty is \pm (2 ppbv + 2
180	%) at a 4-second sampling resolution (Thouret et al., 1998).
181	CO measurements were made using infra-red absorption photometers (standard model 48
182	Trace Level, Thermo Scientific, modified for aircraft use) with an uncertainty of \pm (5 ppbv + 5
183	%) at a 30-second sampling resolution (Nédélec et al., 2003, 2015).
184	
185	2.4 <u>Ozonesondes</u>
186	Ozonesondes have measured the vertical distribution of O ₃ in the atmosphere for decades,
187	and provide some of the longest tropospheric records that are commonly used to determine
188	regional O ₃ trends (Gaudel et al., 2018; Leonard et al., 2017; Oltmans et al., 2001; Tarasick et

189	al., 2019a; Thompson et al., 2017). Ozonesonde launching sites are operated by the NOAA
190	ESRL Global Monitoring Division (GMD), NASA Goddard's Southern Hemisphere Additional
191	OZonesondes (SHADOZ) program, the New Zealand National Institute of Water & Atmospheric
192	Research (NIWA), the National Meteorological Center of Argentina (SNMA) in collaboration
193	with the Finnish Meteorological Institute (FMI), or Environment and Climate Change Canada. A
194	more detailed description of each ozonesonde site and corresponding dataset can be found in
195	Tables S1 and S2. All sites use electrochemical concentration cell (ECC) ozonesondes that rely
196	on the potassium iodide electrochemical detection of O_3 , and which provide a vertical resolution
197	of about 100 m (Komhyr, 1969). The associated uncertainty is usually \pm (5–10 %) (Tarasick et
198	al., 2019a; Thompson et al., 2019; Witte et al., 2018).
199	
200	2.5 Data analysis
201	In this analysis, ATom flight tracks were divided into the Atlantic and Pacific basins, and
202	further subdivided into five regions within those basins: tropics, and northern and southern
203	middle- and high-latitudes. Vertical profiles presented graphically in this paper show O ₃ median
204	values and the 25^{th} to 75^{th} percentile range within the 0–12 km tropospheric column sampled by
205	the DC-8 aircraft. These medians were obtained by averaging with equal weight the individual
206	profiles within each region over 1 km altitude bins.
207	HIPPO flight tracks are illustrated in Figure 1. The flight segments used for comparison
208	with ATom were binned into the same Pacific latitude and longitude bands as for ATom. HIPPO
209	vertical profile data are derived using the same methodology as for ATom.
210	All IAGOS flight tracks over the northern and tropical Atlantic are represented in Figure
211	1 in green. The latitude bands used to parse IAGOS data are consistent with the ones used for
212	ATom. The longitude bands are 50° W to 20° W in the tropics, 50° W to 10° W in the northern
213	midlatitudes, and 110° W to 10° W in the northern high-latitudes. Variations of the longitude
214	band widths do not significantly affect the O3 distributions measured by IAGOS. Data from all
215	flights from 1994 to 2017 were included in the IAGOS dataset considered here, and were then
216	divided into two altitude bins (8-10 km and 10-12 km) in order to better understand the
217	influence of different O ₃ sources (e.g., anthropogenic, stratospheric) on these two layers of the
218	atmosphere.

219	We compare the ozonesonde measurements to ATom and HIPPO aircraft data sampled
220	within 500 km of each ozonesonde launching site, since we expect a robust correlation in the free
221	troposphere within this distance (Liu et al., 2009). We used the surface coordinates of the
222	ozonesonde sites because the in-flight coordinates of ozonesondes are not available at all sites.
223	For comparison with ozonesonde long term records, we consider three regions of the
224	atmosphere: boundary layer (0-2 km), free troposphere (2-8 km), and UTLS (8-12 km). For
225	each layer, we compared monthly O3 distributions from ozonesondes with the corresponding
226	seasonal O_3 distributions from aircraft measurements using the skill score (S _{score}) metric (Perkins
227	et al., 2007). The Sscore is calculated by summing the minimum probability of two normalized
228	distributions at each bin center, and therefore measures the overlapping area between two
229	probability distribution functions. If the distributions are identical, the skill score will equal 100
230	% (see Fig. S1 for further examples). Note the S_{score} is positively correlated with the size of the
231	bin used to compare distributions. Here we chose a bin size of 5 ppbv, which is larger than the
232	combined precision of ATom, HIPPO, and IAGOS measurements, but small enough to separate
233	distinct air masses and their influence on O3 distribution. Variables such as the distance to each
234	ozonesonde launching site (500 km in this study), the bin size of the O_3 distributions (5 ppbv in
235	this study), and the length of each ozonesonde record (full length in this study) can shift the
236	vertically-averaged S_{score} value by up to 8 % (Table S3). We therefore treat this 8 % as a rough
237	estimate of the precision of the S _{score} values presented here.
238	All three techniques (chemiluminescence, UV absorption, and ECC) used to measure O_3
230	for the datasets analyzed in this work have been shown to provide directly-comparable accurate

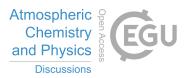
for the datasets analyzed in this work have been shown to provide directly-comparable accurate
measurements with well-defined uncertainties (Tarasick et al., 2019a).

241

242 2.6 Back trajectory analysis

243 Analysis of back trajectories for air masses sampled during airborne missions is useful to

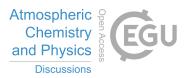
examine the air mass source regions and causes for O₃ variability over the Pacific and Atlantic


- 245 Oceans. We calculated ten-day back trajectories using the Traj3D model (Bowman, 1993;
- 246 Bowman and Carrie, 2002) and National Centers for Environmental Prediction (NCEP) global
- 247 forecast system (GFS) meteorology. Trajectories were initialized each minute along all of the
- ATom flight tracks.
- 249

250	3. Comparison of ATom and HIPPO O ₃ distributions to longer-term observational
251	records
252	Here we use existing ozonesonde and IAGOS observations of O3 at selected locations
253	along the ATom and HIPPO circuits to provide a climatological context for O ₃ distributions
254	derived from the systematic airborne in situ "snapshots". We quantify how much of O ₃
255	variability, occurring on timescales ranging from hours to decades, was captured by the
256	temporally-limited HIPPO and ATom missions.
257	
258	3.1. Comparison to ozonesondes
259	ATom and HIPPO explored the fidelity with which airborne missions represent O_3
260	climatology in the remote troposphere. Here, we show that aircraft-measured median O ₃ follows
261	the seasonal ozonesonde-measured median O3 cycle at most of the sites studied here, and at
262	almost all altitudes – with a few exceptions (Figs. 2 and 3). Figure 2 plots the monthly median O_3
263	measurements from the tropical ozonesonde sites in three altitude bins, along with the median
264	values obtained from HIPPO and ATom measurements. Figure 3 plots the same for the
265	extratropical sites. Figure 4 correlates the median O_3 measured by aircraft in Figures 2 and 3
266	with those measured by ozonesondes. At the Eureka site, the winter and spring ATom
267	deployments recorded a significantly lower median O3 compared to the corresponding
268	ozonesonde monthly median O ₃ in the 0–2 km range (Fig. 3). Eureka is frequently subject to
269	springtime O3 depletion events at the surface due to atmospheric bromine chemistry, which is
270	well recorded by the ozonesonde record (Fig. 3; Tarasick and Bottenheim, 2002). Sampling
271	during O3 depletion events significantly lowered the ATom winter and springtime O3
272	distributions near this site. In the 2-8 km range, there is a very good seasonal agreement between
273	ATom/HIPPO and the ozonesondes (Fig. 4b). Most seasonal differences are found above 8 km
274	(e.g., ATom in February at Trinidad Head and in May at Eureka; Fig. 3) and can be linked to the
275	occurrence - or absence - of stratospheric air sampling during ATom and HIPPO. However, it is
276	straightforward to remove stratospheric airmasses from airborne data using filters based on
277	meteorology (potential vorticity) or composition (H2O/O3) (e.g., Cohen et al., 2018). In the
278	absence of stratospheric air mixing (< 8 km in Fig. 4), ATom/HIPPO successfully capture a large
279	fraction of O ₃ climatology everywhere (Figs. 4b and 4c).
280	

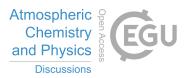
281	Figures 5 and 6 show vertical profiles of O_3 distributions by season at each ozonesonde
282	site, along with comparisons to HIPPO and ATom vertical profiles. Our analysis reveals that O ₃
283	distributions derived from the ATom and HIPPO seasonal "snapshots" capture 30–71 % of the 1
284	km-vertically_binned O_3 distribution established by long-term ozonesonde climatologies. For the
285	nine ozonesonde sites considered here, ATom and HIPPO captured on average 53 %, 54 %, and
286	38% of the O ₃ distribution in the 0–2 km, 2–8 km, and 8–12 km altitude bins, respectively.
287	Larger differences between ATom/HIPPO and the ozonesonde records in the UTLS (8–
288	12 km) can be ascribed to O_3 variability from stratospheric–tropospheric exchanges, which are
289	not always captured by the ATom and HIPPO missions. This increased O ₃ variability in the
290	UTLS is well-described by the long term ozonesonde records at Lauder, Trinidad Head, Eureka,
290	Ushuaia, and Marambio (Figs. 3 and 6). In these middle- and high-latitude locations in both
292	hemispheres, O ₃ variability is especially pronounced during winter and spring, time periods
292	favorable to more frequent stratospheric air mixing (Greenslade et al., 2017; Lin et al., 2015;
294	Tarasick et al., 2019b). Furthermore, the probability of sampling stratospheric air masses at
295	ATom and HIPPO ceiling altitude (12–14 km) increases with latitude, resulting in a lower S _{score}
296	between the ATom/HIPPO and ozonesonde datasets at the extra-tropical sites than at the tropical
290 297	sites (Figs. S2a and S2b).
298	In the boundary layer $(0-2 \text{ km})$ of the remote troposphere, O ₃ variability is predominantly
299	impacted by loss mechanisms. Ozonesonde records show instances of O_3 mixing ratios lower
300	than 10 ppbv throughout the year in the boundary layer at the nine sites studied here (Figs. 2 and
301	3). The lowest O_3 mixing ratios are a result of (a) photochemical destruction over the oceans in
302	the tropics (Monks et al., 1998, 2000; Thompson et al., 1993), (b) O ₃ -destroying halogen
302	emissions in polar regions in springtime (e.g., Fan and Jacob, 1992), and (c) transport of O ₃ -poor
303 304	oceanic air over the midlatitude sites (e.g., Neuman et al., 2012).
304 305	ATom and HIPPO best describe the O_3 distribution in the free troposphere (2–8 km; Figs.
305 306	S2a and S2b). This suggests that airborne campaigns can capture global baseline O_3 values,
307	along with the long-range transport of O ₃ pollution plumes often lofted to this altitude range and
308	responsible for O ₃ variability.
309	
310	While ATom consisted of one transect per ocean per season, HIPPO covered the Pacific
311	twice per seasonal deployment (southbound and northbound). The 1 km-binned S_{score} is on

312	average higher when two combined seasonal HIPPO flights (southbound and northbound) were
313	available to compare to ozonesonde records, as opposed to when comparing O ₃ profiles from
314	individual HIPPO transects with ozonesonde records (Fig. S2c). In addition, two seasonal flights
315	during HIPPO reduced the occurrence of low S_{score} values. This S_{score} decrease from flying only
316	one Pacific transect only during ATom was traded for the increase of vertical profiles over the
317	Atlantic Basin, which were not sampled during HIPPO. Future airborne missions with multiple
318	seasonal vertical profiles over large-scale regions would be ideal to better depict the full range of
319	tropospheric O ₃ variability.
320	
321	3.2. Comparison to IAGOS
322	IAGOS O3 and CO observations in the northern Atlantic UTLS provide a measurement-
323	based climatology at commercial aircraft cruise altitudes for comparison to ATom. Simultaneous
324	measurements of O_3 and CO are of particular interest because CO provides a long-lived tracer of
325	continental emissions, which helps to differentiate O ₃ sources (Cohen et al., 2018). We note that
326	while IAGOS measurements encompass hundreds of seasonal flights (depending on the region),
327	ATom sampled within each latitude band and season on one or two flights only (Fig. 1). Thus,
328	variability in the UT that occurred on timescales longer than a day were not captured by ATom.
329	Consequently, it is not surprising to see that ATom systematically under-sampled tropospheric
330	O ₃ (and CO) variability compared to IAGOS at all latitudes in the northern Atlantic (Figs. 7 and
331	8). A Tom captured on average 40 % of the O_3 variability measured by IAGOS in the Atlantic
332	UTLS (Fig. 7), on par with the S_{score} of 38 % obtained when comparing ATom and HIPPO to
333	ozonesonde data (see section 3.1).
334	
335	In the middle- and high-latitudes, the shapes of the O3 vs. CO scatterplots from IAGOS
336	data demonstrate that distinct sources contribute to O ₃ levels in the UTLS (Figs. 8a and 8b;
337	Gaudel et al., 2015). The high O ₃ (>150 ppbv) – low CO (<100 ppbv) range corresponds to
338	intrusions of stratospheric air, which were mostly sampled in the spring season during ATom,
339	supporting previous observations of increased stratospheric air mixing during this season (Lin et
340	al., 2015; Tarasick et al., 2019b). The low O ₃ (<50 ppbv) – low CO (<100 ppbv) range
341	corresponds to the tropospheric baseline air, whereas the intermediate O_3 (50–120 ppbv) – high
342	CO (>100 ppbv) range generally represents the influence of air masses transported from



- 343 continental regions. During ATom, high O₃ and low CO in the middle- and high-latitude UTLS
- 344 were typical of stratospheric and baseline tropospheric air mixing.
- 345

346	O3 measured during IAGOS rarely exceeds 150 ppbv in the northern tropical Atlantic
347	UTLS (Fig. 8c). This is expected because the tropical tropopause is typically situated between 13
348	and 17 km altitude and IAGOS flights typically cruise below 12 km. Therefore, instances of
349	stratospheric intrusions at IAGOS flight altitudes are limited. O3 measured during ATom in the
350	tropical Atlantic above 8 km was generally positively correlated with CO, showing the
351	contribution of tropospheric O ₃ production from continental sources reaching high altitudes.
352	Given this variability, the ATom data do not capture the extrema of UTLS O ₃ variability in the
353	IAGOS measurements (Figs. 7 and 8). However, the most frequently measured O_3 and CO
354	values from ATom overlap with the most frequently measured O3 and CO values from IAGOS
355	(contours in Fig. 8), suggesting that ATom captured the mode of the O3 and CO distributions
356	from IAGOS in the northern Atlantic UTLS.
357	
358	4. O ₃ distributions in the remote troposphere from ATom and HIPPO
359	We have established the fidelity of ATom and HIPPO O ₃ data by comparison to
360	measurement-based climatologies of tropospheric O3 from well-established ozonesonde and
361	commercial aircraft monitoring programs. In the following sections we exploit the systematic
362	nature of the ATom and HIPPO vertical profiles to provide a global-scale picture of tropospheric
363	O3 distributions in the remote atmosphere. Figure 9 presents the altitudinal, latitudinal, and
364	seasonal distribution of tropospheric O3 during ATom and HIPPO. Higher O3 was measured
365	during ATom & HIPPO in the Northern Hemisphere (NH) than in the Southern Hemisphere
366	(SH), both in the Pacific and in the Atlantic. This holds true throughout the tropospheric column
367	from 0 to 8 km, both in the middle- and high-latitudes (Fig. S3). In the midlatitudes below 8 km,
368	median O_3 ranged between 25 and 45 ppbv in the SH, and between 35 and 65 ppbv in the NH. In
369	the high latitudes below 8 km, median O3 ranged between 30 and 45 ppbv in the SH, and
370	between 40 and 75 ppbv in the NH. Notable features in the global O_3 distribution are discussed
371	in more detail in the following sections. Figure 10 presents the vertically-resolved distribution of
372	tropospheric O_3 from 0–12 km for the Atlantic (ATom in green) and for the pacific (ATom in
373	pink, HIPPO in blue). Sscore values resulting from the comparison of HIPPO and ATom Pacific

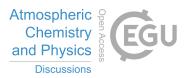


- distributions are shown with blue diamonds, and from the comparison of ATom Atlantic and Pacific distributions with pink squares. Figure 11 is derived from Figure 10 and gives the S_{score} values against altitude in the first panel, as well as the relative difference of median O₃ from 0 to 8 km in the second panel. Figure
- 378

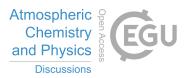
379 4.1. <u>Tropics</u>

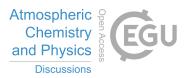
380 **Vertical distribution.** O₃ is at a minimum in the tropical marine boundary layer (MBL), 381 especially over the Pacific (Fig. 10a). The lowest measured O₃ in this region was 5.4 ppbv in 382 May during ATom, and 3.5 ppbv in January during HIPPO. The tropical MBL is a net O₃ sink 383 owing to very slow O_3 production rates – NO levels averaged 22 ± 12 pptv in the Pacific and 384 Atlantic MBL during ATom – and rapid photochemical destruction rates of O₃ in a sunny, humid 385 environment (Kley et al., 1996; Parrish et al., 2016; Thompson et al., 1993). Deep stratospheric 386 intrusions into the Pacific MBL were not observed in ATom or HIPPO, in contrast to reports 387 from previous studies (e.g., Cooper et al., 2005; Nath et al., 2016). In the tropics, marine 388 convection within the intertropical convergence zone (ITCZ) is associated with relatively low O_3 389 values throughout the tropospheric column, with median O₃ mixing ratios less than 25 ppbv 390 below 4 km altitude in the tropical Pacific (Fig. 10a; Oltmans et al., 2001). The relative 391 difference between ATom Atlantic and Pacific median O₃ in the tropics below 8 km is 392 consistently higher than a factor of 1.5, with an average S_{score} of 43 % (Figs. 10a and 11b). We 393 ascribe this difference to O₃ production from biomass burning (BB) emissions in the continental 394 regions surrounding the tropical Atlantic; back trajectories from the ATom flight tracks show the 395 tropical Atlantic is strongly affected by transport from BB source regions in both Africa and 396 South America (Fig. S4; Jensen et al., 2012; Sauvage et al., 2006; Stauffer et al., 2018; 397 Thompson et al., 2000). Although ATom and HIPPO data show evidence for extensive and 398 widespread BB influence on O_3 in the Pacific as well, O_3 mixing ratios are consistently more 399 elevated throughout the tropospheric column in the Atlantic. One reason is closer proximity of 400 the mid-ocean Atlantic flight tracks to O₃ precursor source regions. In addition, the positive 401 correlation of O₃ enhancements with black carbon (Katich et al., 2018) and reactive nitrogen 402 species (Thompson et al., personal communication) indicate BB influence. These findings 403 confirm studies that previously highlighted the impact of African BB emissions on O₃ production in the tropical Atlantic (e.g., Andreae et al., 1994; Fishman et al., 1996; Jourdain et al., 2007; 404

405	Williams et al., 2010). Lightning NO_x also play a role in the buildup of O_3 over the tropical
406	Atlantic at certain times of year (Moxim and Levy, 2000; Pickering et al., 1996).
407	Seasonality. The seasonal variation of vertical profiles of O_3 in the tropics is lower
408	throughout the column compared to the extra-tropics (Fig. 12), in part due to less stratospheric
409	influence at the highest tropical altitudes. The remoteness of the tropical Pacific flight paths from
410	continental pollution sources also drives the lower seasonal variability here compared to the
411	tropical Atlantic, where BB influence peaks in June-August and October-November,
412	characterized by high O ₃ (> 75 ppbv) and high CO (>100 ppbv) (Fig. 13f), significantly increases
413	the O ₃ vertical distribution compared to the other seasons (Figs. 12c, 12h, and 12m). Finally,
414	photochemistry, which regulates O3 net balance in the troposphere, is less seasonally variable in
415	the tropics than in the extra-tropics, where the photolysis frequency of O_3 (j(O ₃)) and
416	photochemical production of O ₃ fluctuate annually with solar zenith angle.
417	O_3 minima and maxima. Coincident O_3 and CO enhancements were observed in the
418	tropical Atlantic for each ATom circuit (Figs. 9 and 13f), suggesting a year-round influence of
419	continental emissions and distinctive dynamics in this region (Krishnamurti et al., 1996;
420	Thompson et al., 1996). In the tropical Pacific, the April-May period stands out due to an O3 and
421	CO enhancement episode during HIPPO (Fig. 9) that was attributed to the transport of
422	anthropogenic and BB emissions from southeast Asia (Shen et al., 2014).
423	Deep convection in the tropics brings O ₃ -poor (<15 ppbv) air to the upper troposphere (Kley et
424	al., 1996; Pan et al., 2015; Solomon et al., 2005). However, the spatial extent of these events
425	remains poorly constrained. Results from ATom and HIPPO suggest that deep convection can
426	loft O3-poor air at least up to 12 km (the altitude ceiling of this study) in the tropical Pacific, and
427	occurred more frequently between January and May (Figs. 12c and h). During the rest of the
428	year, O ₃ -poor air was typically confined below 4 km. Conversely, O ₃ -poor air is confined to the
429	first 2 km in the tropical Atlantic (Fig. S5). Meteorological analysis of tropical ozonesondes
430	shows that subsidence of higher-O3 air aloft over the Atlantic is one reason O3-poor air is found
431	only in the boundary layer (Thompson et al., 2000, 2012).
432	
433	4.2. Middle- and high-latitudes
434	Vertical distribution. In the middle- and high-latitudes, tropospheric O ₃ was generally at
435	a minimum in the MBL and increased with altitude. Above 8 km, increasing O3 with altitude



436	(Figs. 10b-e) and its persistent anticorrelation with CO (Fig. 13) points to stratospheric air
437	sampling as the cause for higher O ₃ variability in the extra-tropical UTLS, especially at high
438	latitudes where the tropopause is lower and wave breaking of the polar jet streams can lead to
439	stratospheric intrusions. As a result, the Sscore decrease above 8 km, summarized in Figure 11a, is
440	ascribed to variability in the influence of stratospheric air. ATom detected little change in the O ₃
441	distribution over the Pacific Ocean since HIPPO, with a S_{score} averaging 74 % in the 0–8 km
442	range. The relative difference between median O3 values from HIPPO and ATom in the Pacific
443	is generally lower than 20 % (Fig. 11b). Similarly, the relative difference between median O_3
444	mixing ratios between ATom Atlantic and Pacific below 8 km is consistently lower than 20 %,
445	with an average S_{score} of 75 % between (Fig. 11b). The southern high-latitudes are the only
446	region where the S_{score} below 8 km occasionally fell below 60 % (Fig. 10e). However, a lower
447	S_{score} was expected there as the Atlantic vertical profile is based on only two seasonal flights to
448	Antarctica, whereas there were four seasonal flights in the Pacific. Additionally, HIPPO was less
449	spatially extensive - resulting in fewer data points - in this latitude bin compared to ATom (Fig.
450	1), which could explain the low S_{score} values when comparing the two missions (Fig. 10e).
451	Nevertheless, the similar O ₃ distribution in the extra-tropical free troposphere above the two
452	oceans is consistent with an O ₃ lifetime sufficiently long for rapid zonal transport to smooth out
453	variations in baseline O_3 distribution in the remote troposphere, across a relatively wide range of
454	longitudes (Figs. 10b-e). The comparison of O3 seasonal cycles at remote ozonesonde launching
455	sites of the northern midlatitudes yields similar results and further supports this conclusion
456	(Parrish et al., in review). Studies of the spatial representativeness of tropospheric O ₃ monitoring
457	networks have concluded that tropospheric O3 distributions varied significantly with longitude,
458	especially in the northern middle- and high-latitudes over continents (Liu et al., 2013; Tilmes et
459	al., 2012). ATom findings stem from O3 measurements predominantly over the oceans, possibly
460	yielding a different picture of O ₃ longitudinal distribution away from regional precursor
461	emissions.
462	Seasonality. The extra-tropical vertical profiles of O_3 vary seasonally during ATom and
463	HIPPO. The summer season in the middle- and high-latitudes was remarkable over both oceans
464	and hemispheres for the steep O_3 gradients in the tropospheric column (Fig. 12 in black). In the
465	MBL, median O ₃ was consistently under 25 ppbv in the summer, whereas O ₃ was over 25 ppbv


466 in other seasons. Low O₃ in the MBL in summer reflects the enhanced O₃ photochemical


467 destruction in this NO_x-limited region. Photochemical destruction decreases in dry air in the 468 upper troposphere, thus leading to the steep O_3 gradients observed here. The summer O_3 469 minimum was especially apparent in the high latitudes of the southern Pacific during ATom and 470 extended well above the MBL into the free troposphere (Fig. 12 in black). 471 O₃ mixing ratios were highest in the tropospheric column during springtime in both 472 hemispheres, and over both oceans (Fig. 12 in gold). A notable exception occurred during 473 springtime in the high latitudes of the NH, where several O₃ depletion events were sampled in 474 the lower legs of the Arctic transit. During these events, O₃ mixing ratios lower than 10 ppbv were measured, resulting in a lower 25th percentile of O3 distribution at the lowest altitude 475 476 compared to the other seasons (Fig. 12e in gold). A tropospheric O₃ springtime maximum has 477 often been reported in the NH (e.g., Monks, 2000) when meteorology favors efficient transport 478 of O₃ and precursors from continental air from North America and Eurasia (Owen et al., 2006; 479 Zhang et al., 2017, 2008). Another contributing factor is the increased frequency of stratospheric 480 air mixing in spring that significantly contributes to higher O₃ levels (Lin et al., 2015; Tarasick et 481 al., 2019b). Further, the tropospheric O₃ springtime maximum in the SH is often attributed to BB 482 emissions reaching a peak ((Fishman et al., 1991; Gaudel et al., 2018), but stratospheric air 483 mixing also occurs (Diab et al., 1996, 2004; Greenslade et al., 2017). Here, the O₃/CO 484 relationship in spring shows that the enhanced stratospheric mixing with tropospheric air during 485 this season, both in the northern and southern middle- and high-latitudes, contributes to the 486 increase in column O₃ (Fig. 13). 487 Fall and winter seasons shared similar features in the middle- and high-latitudes: no 488 strong O_3 gradient was measured in the free troposphere, and O_3 values varied over similar 489 ranges – about 40 ppbv in the NH and about 30 ppbv in the SH – during the two seasons (Fig. 12 490 in red and blue). 491 **O₃ enhancements.** The linear increase of O_3 with CO >100 ppbv highlights the 492 contribution of natural and anthropogenic pollution plumes lofted from continental areas into the 493 remote troposphere. 494 In the NH, these events occur almost year-round (Figs. 13b-c and 13g-h). Higher CO 495 enhancements in the Pacific (Figs. 13g-h) than in the Atlantic (Figs. 13b-c) have been observed 496 before and attributed to sampling bias (Clark et al., 2015). Here, our findings suggest a year-497 round influence of continental emissions on the Pacific atmosphere despite its remoteness.

498	Modeled back trajectories show that most air masses sampled in the NH during ATom were
499	influenced by long-range transport of continental emissions from Asia, Africa, and North
500	America (Fig. S6). Previous studies have shown anthropogenic and BB emission outflow from
501	Asia significantly contributed to O ₃ pollution events measured over the northern Pacific or in
502	California (e.g., Heald et al., 2003; Jaffe et al., 2004; Lin et al., 2017). Intercontinental transport
503	of anthropogenic emissions from Europe can also contribute to the Asian outflow of
504	anthropogenic pollution (e.g., Bey et al., 2001; Liu et al., 2002; Newell and Evans, 2000).
505	Finally, O ₃ enhancements in the northern Atlantic were frequently observed and attributed to
506	midlatitude anthropogenic and boreal forest fire emissions (e.g., Honrath et al., 2004; Martín et
507	al., 2006; Trickl et al., 2003).
508	In the SH, polluted air is encountered more often in spring and summer over the Atlantic,
509	but springtime CO is greater than in other seasons over the Pacific (Figs. 13d-e and 13i-j).
510	During spring, median O ₃ above 50 ppbv was measured throughout the free troposphere in the
511	southern midlatitudes (Fig. 12). Several air masses intercepted during these flights originated
512	from regions that were intensively burning at the time, notably equatorial and southern Africa,
513	Australia, and southern South America, contributing to the observed enhanced O_3 and CO (Fig.
514	S4).
515	
516	5. Conclusion
517	We present tropospheric O3 distributions measured over remote regions of the Pacific and
518	Atlantic Oceans during two airborne chemical sampling projects: the four deployments of ATom
519	(2016–2018) and the five deployments of HIPPO (2009–2011). The data highlight several
520	regional- and large-scale features of O ₃ distributions, and provide valuable new insight into O ₃
521	distributions in remote regions. The main findings are as follows:
522	- ATom and HIPPO provide a unique perspective on vertically-resolved global baseline O ₃
523	distributions over the Pacific and Atlantic basins, and expand upon spatially-limited O ₃
524	climatologies from long-term datasets to highlight large-scale features necessary for
525	model output and satellite retrieval validation.
526	- ATom and HIPPO O ₃ data are consistent – where they overlap – with measurement-
527	based climatologies of tropospheric O3 from well-established ozonesonde and
528	commercial aircraft monitoring programs. ATom and HIPPO seasonal median O3 showed

529		high correlation ($R^2 > 0.7$) with corresponding seasonal median O_3 from ozonesondes,
530		giving confidence in the accurate depiction of the emerging global O ₃ climatology by
531		these diverse research activities.
532		ATom and HIPPO captured 30-71 % of O3 variability measured by ozonesondes
533		launched in the vicinity of the aircraft flight tracks, and had the same mode of the O_3
534		distribution as determined by IAGOS in the northern Atlantic UTLS.
535	-	Higher O ₃ loading in the NH compared to the SH is consistent with the heterogeneous
536		distribution of O_3 precursor emissions around the globe, mostly concentrated in the NH.
537		ATom Atlantic vs. Pacific comparison reveals a similar O ₃ distribution in the free
538		troposphere up to \sim 8 km in the middle- and high-latitudes, but not in the tropics. In the
539		tropics, median O ₃ mixing ratios are about twice as high in the Atlantic than in the
540		Pacific, due to a well-documented mixture of dynamical patterns interacting with the
541		transport of continental air masses.
542	-	The comparison of seasonal O ₃ vertical profiles does not reveal a marked seasonality in
543		the tropics, but instead highlights the influence of specific events, most notably BB
544		emissions from Africa and South America. In the extra-tropics, the summer season is
545		characterized by a steeper tropospheric O3 gradient driven by very low O3 abundance in
546		the MBL. Fall and winter seasons generally lead to near-constant O ₃ mixing ratios from
547		the surface to the upper troposphere, while the highest O ₃ abundance is recorded during
548		the spring season when more frequent and intense stratospheric intrusions and transport
549		of air masses from continental regions occur.
550	-	Overall, this paper highlights the value of the ATom and HIPPO datasets, which cover
551		spatial scales commensurate with the grid resolution of current Earth system models, and
552		further useful as a priori estimates for improved retrievals of tropospheric O ₃ from
553		satellite remote sensing platforms. ATom and HIPPO datasets should be critical for
554		improving the scientific community's understanding of O ₃ production and loss processes,
555		and the influence of anthropogenic emissions on baseline O_3 in remote regions. They
556		provide a timely addition to the Tropospheric Ozone Assessment Report (TOAR) effort
557		to characterize the global-scale O ₃ distribution, and addresses some of the measurement
558		gaps identified therein.
559		

560 Acknowledgments

- 561 We thank the ATom leadership team, science team, and DC-8 pilots and crew for contributions
- 562 to the ATom measurements. The authors acknowledge support by the U.S. NASA's Earth
- 563 System Science Pathfinder Program under award NNH15AB12I, NNX15AJ23G and
- 564 NNX15AH33A, and by the U.S. National Oceanic and Atmospheric Administration (NOAA)
- 565 Health of the Atmosphere and Atmospheric Chemistry, Carbon Cycle, and Climate Programs.
- 566 SHADOZ ozonesondes are supported by the Upper Atmosphere Research Program of NASA.
- 567 Ozonesoundings at Marambio have been supported by the Finnish Antarctic research program
- 568 (FINNARP). We thank J. A. Neuman, H. Angot, and O. Cooper for helpful discussions and
- 569 careful editing of this manuscript. The IAGOS program acknowledges the European
- 570 Commission for its support of the MOZAIC project (1994-2003) the preparatory phase of
- 571 IAGOS (2005-2013) and IGAS (2013-2016); the partner institutions of the IAGOS Research
- 572 Infrastructure (FZJ, DLR, MPI, KIT in Germany, CNRS, Météo-France, Université Paul Sabatier
- 573 in France, and University of Manchester, UK); the French Atmospheric Data Center AERIS for
- 574 hosting the database; and the participating airlines (Lufthansa, Air France, China Airlines, Iberia,
- 575 Cathay Pacific, Hawaiian Airlines) for transporting the instrumentation free of charge.
- 576
- 577

578 **References**

579

- 580 Andreae, M. O., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Collins, J. E., Gregory, G. L.,
- 581 Sachse, G. W. and Shipham, M. C.: Influence of plumes from biomass burning on atmospheric
- 582 chemistry over the equatorial and tropical South Atlantic during CITE 3, Journal of Geophysical
- 583 Research, 99(D6), 12793, doi:10.1029/94JD00263, 1994.
- 584 Bey, I., Jacob, D. J., Logan, J. A. and Yantosca, R. M.: Asian chemical outflow to the Pacific in 585 spring: Origins, pathways, and budgets, Journal of Geophysical Research: Atmospheres,
- 586 106(D19), 23097–23113, doi:10.1029/2001JD000806, 2001.
- 587 Bowman, K. P.: Large-scale isentropic mixing properties of the Antarctic polar vortex from
- analyzed winds, Journal of Geophysical Research: Atmospheres, 98(D12), 23013–23027,
 doi:10.1029/93JD02599, 1993.
- 590 Bowman, K. P. and Carrie, G. D.: The Mean-Meridional Transport Circulation of the Troposphere
- 591 in an Idealized GCM, J. Atmos. Sci., 59(9), 1502–1514, doi:10.1175/1520-
- 592 0469(2002)059<1502:TMMTCO>2.0.CO;2, 2002.

- 593 Brenninkmeijer, C. a. M., Crutzen, P., Boumard, F., Dauer, T., Dix, B., Ebinghaus, R., Filippi, D.,
- 594 Fischer, H., Franke, H., Frieβ, U., Heintzenberg, J., Helleis, F., Hermann, M., Kock, H. H., Koeppel,
- 595 C., Lelieveld, J., Leuenberger, M., Martinsson, B. G., Miemczyk, S., Moret, H. P., Nguyen, H. N.,
- 596 Nyfeler, P., Oram, D., O'Sullivan, D., Penkett, S., Platt, U., Pupek, M., Ramonet, M., Randa, B.,
- 597 Reichelt, M., Rhee, T. S., Rohwer, J., Rosenfeld, K., Scharffe, D., Schlager, H., Schumann, U.,
- 598 Slemr, F., Sprung, D., Stock, P., Thaler, R., Valentino, F., Velthoven, P. van, Waibel, A., Wandel,
- A., Waschitschek, K., Wiedensohler, A., Xueref-Remy, I., Zahn, A., Zech, U. and Ziereis, H.: Civil
- Aircraft for the regular investigation of the atmosphere based on an instrumented container:
- 601 The new CARIBIC system, Atmospheric Chemistry and Physics, 7(18), 4953–4976,
- 602 doi:https://doi.org/10.5194/acp-7-4953-2007, 2007.
- 603 Clark, H., Sauvage, B., Thouret, V., Nédélec, P., Blot, R., Wang, K.-Y., Smit, H., Neis, P., Petzold,
- A., Athier, G., Boulanger, D., Cousin, J.-M., Beswick, K., Gallagher, M., Baumgardner, D., Kaiser,
- 505 J., Flaud, J.-M., Wahner, A., Volz-Thomas, A. and Cammas, J.-P.: The first regular measurements
- 606 of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS, Tellus B: Chemical
- 607 and Physical Meteorology, 67(1), 28385, doi:10.3402/tellusb.v67.28385, 2015.
- 608 Cohen, Y., Petetin, H., Thouret, V., Marécal, V., Josse, B., Clark, H., Sauvage, B., Fontaine, A.,
- 609 Athier, G., Blot, R., Boulanger, D., Cousin, J.-M. and Nédélec, P.: Climatology and long-term
- 610 evolution of ozone and carbon monoxide in the upper troposphere–lower stratosphere (UTLS)
- at northern midlatitudes, as seen by IAGOS from 1995 to 2013, Atmospheric Chemistry and
- 612 Physics, 18(8), 5415–5453, doi:https://doi.org/10.5194/acp-18-5415-2018, 2018.
- 613 Cooper, O. R., Stohl, A., Hübler, G., Hsie, E. Y., Parrish, D. D., Tuck, A. F., Kiladis, G. N., Oltmans,
- 614 S. J., Johnson, B. J., Shapiro, M., Moody, J. L. and Lefohn, A. S.: Direct transport of midlatitude
- 615 stratospheric ozone into the lower troposphere and marine boundary layer of the tropical
- 616 Pacific Ocean, J. Geophys. Res., 110(D23), D23310, doi:10.1029/2005JD005783, 2005.
- 617 Crutzen, P. J.: Photochemical reactions initiated by and influencing ozone in unpolluted
- 618 tropospheric air, Tellus, 26(1–2), 47–57, doi:10.3402/tellusa.v26i1-2.9736, 1974.
- 619 Diab, R. D., Thompson, A. M., Zunckel, M., Coetzee, G. J. R., Combrink, J., Bodeker, G. E.,
- 620 Fishman, J., Sokolic, F., McNamara, D. P., Archer, C. B. and Nganga, D.: Vertical ozone
- 621 distribution over southern Africa and adjacent oceans during SAFARI-92, Journal of Geophysical
- 622 Research: Atmospheres, 101(D19), 23823–23833, doi:10.1029/96JD01267, 1996.
- Diab, R. D., Thompson, A. M., Mari, K., Ramsay, L. and Coetzee, G. J. R.: Tropospheric ozone
- 624 climatology over Irene, South Africa, from 1990 to 1994 and 1998 to 2002, Journal of
- 625 Geophysical Research: Atmospheres, 109(D20), doi:10.1029/2004JD004793, 2004.
- 626 Fan, S.-M. and Jacob, D. J.: Surface ozone depletion in Arctic spring sustained by bromine
- 627 reactions on aerosols, Nature, 359(6395), 522–524, doi:10.1038/359522a0, 1992.

- 628 Fishman, J., Fakhruzzaman, K., Cros, B. and Nganga, D.: Identification of Widespread Pollution in
- the Southern Hemisphere Deduced from Satellite Analyses, Science, 252(5013), 1693–1696,
- 630 doi:10.1126/science.252.5013.1693, 1991.
- 631 Fishman, J., Hoell, J. M., Bendura, R. D., McNeal, R. J. and Kirchhoff, V. W. J. H.: NASA GTE
- 632 TRACE A experiment (September–October 1992): Overview, Journal of Geophysical Research:
- 633 Atmospheres, 101(D19), 23865–23879, doi:10.1029/96JD00123, 1996.
- 634 Gaudel, A., Clark, H., Thouret, V., Jones, L., Inness, A., Flemming, J., Stein, O., Huijnen, V., Eskes,
- 635 H., Nedelec, P. and Boulanger, D.: On the use of MOZAIC-IAGOS data to assess the ability of the
- 636 MACC reanalysis to reproduce the distribution of ozone and CO in the UTLS over Europe, Tellus
- 637 B: Chemical and Physical Meteorology, 68(s1), 27955, doi:10.3402/tellusb.v67.27955, 2015.
- 638 Gaudel, A., Cooper, O. R., Ancellet, G., Barret, B., Boynard, A., Burrows, J. P., Clerbaux, C.,
- 639 Coheur, P.-F., Cuesta, J., Cuevas, E., Doniki, S., Dufour, G., Ebojie, F., Foret, G., Garcia, O.,
- Muños, M. J. G., Hannigan, J. W., Hase, F., Huang, G., Hassler, B., Hurtmans, D., Jaffe, D., Jones,
- 641 N., Kalabokas, P., Kerridge, B., Kulawik, S. S., Latter, B., Leblanc, T., Flochmoën, E. L., Lin, W., Liu,
- 642 J., Liu, X., Mahieu, E., McClure-Begley, A., Neu, J. L., Osman, M., Palm, M., Petetin, H.,
- 643 Petropavlovskikh, I., Querel, R., Rahpoe, N., Rozanov, A., Schultz, M. G., Schwab, J., Siddans, R.,
- 644 Smale, D., Steinbacher, M., Tanimoto, H., Tarasick, D. W., Thouret, V., Thompson, A. M., Trickl,
- 645 T., Weatherhead, E., Wespes, C., Worden, H. M., Vigouroux, C., Xu, X., Zeng, G. and Ziemke, J.:
- 646 Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric
- ozone relevant to climate and global atmospheric chemistry model evaluation, Elem Sci Anth,
- 648 6(1), doi:10.1525/elementa.291, 2018.
- 649 Greenslade, J. W., Alexander, S. P., Schofield, R., Fisher, J. A. and Klekociuk, A. K.: Stratospheric
- ozone intrusion events and their impacts on tropospheric ozone in the Southern Hemisphere,
 Atmospheric Chemistry and Physics, 17(17), 10269–10290, doi:10.5194/acp-17-10269-2017,
 2017.
- Heald, C. L., Jacob, D. J., Fiore, A. M., Emmons, L. K., Gille, J. C., Deeter, M. N., Warner, J.,
- 654 Edwards, D. P., Crawford, J. H., Hamlin, A. J., Sachse, G. W., Browell, E. V., Avery, M. A., Vay, S.
- A., Westberg, D. J., Blake, D. R., Singh, H. B., Sandholm, S. T., Talbot, R. W. and Fuelberg, H. E.:
- Asian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An
- 657 integrated satellite, aircraft, and model perspective, Journal of Geophysical Research:
- 658 Atmospheres, 108(D24), doi:10.1029/2003JD003507, 2003.
- Holmes, C. D., Prather, M. J., Søvde, O. A. and Myhre, G.: Future methane, hydroxyl, and their
- uncertainties: key climate and emission parameters for future predictions, Atmos. Chem. Phys.,
 13(1), 285–302, doi:10.5194/acp-13-285-2013, 2013.
- 662 Honrath, R. E., Owen, R. C., Martín, M. V., Reid, J. S., Lapina, K., Fialho, P., Dziobak, M. P., Kleissl,
- 663 J. and Westphal, D. L.: Regional and hemispheric impacts of anthropogenic and biomass burning
- 664 emissions on summertime CO and O3 in the North Atlantic lower free troposphere, Journal of
- 665 Geophysical Research: Atmospheres, 109(D24), doi:10.1029/2004JD005147, 2004.

- 666 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the
- 667 Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
- 668 University Press, Cambridge, United Kingdom and New York, NY, USA. [online] Available from:
- 669 https://www.ipcc.ch/report/ar5/wg1/ (Accessed 8 January 2019), 2013.
- 670 Jaffe, D., Bertschi, I., Jaeglé, L., Novelli, P., Reid, J. S., Tanimoto, H., Vingarzan, R. and Westphal,
- 671 D. L.: Long-range transport of Siberian biomass burning emissions and impact on surface ozone
- 672 in western North America, Geophysical Research Letters, 31(16), doi:10.1029/2004GL020093,
- 673 2004.
- 574 Jensen, A. A., Thompson, A. M. and Schmidlin, F. J.: Classification of Ascension Island and Natal
- ozonesondes using self-organizing maps, Journal of Geophysical Research: Atmospheres,
- 676 117(D4), doi:10.1029/2011JD016573, 2012.
- 577 Jourdain, L., Worden, H. M., Worden, J. R., Bowman, K., Li, Q., Eldering, A., Kulawik, S. S.,
- Osterman, G., Boersma, K. F., Fisher, B., Rinsland, C. P., Beer, R. and Gunson, M.: Tropospheric
- 679 vertical distribution of tropical Atlantic ozone observed by TES during the northern African
- biomass burning season, Geophysical Research Letters, 34(4), doi:10.1029/2006GL028284,2007.
- Junge, C. E.: Global ozone budget and exchange between stratosphere and troposphere, Tellus,
 14(4), 363–377, doi:10.1111/j.2153-3490.1962.tb01349.x, 1962.
- Karion, A., Sweeney, C., Wolter, S., Newberger, T., Chen, H., Andrews, A., Kofler, J., Neff, D. and
- Tans, P.: Long-term greenhouse gas measurements from aircraft, Atmospheric Measurement
 Techniques, 6(3), 511–526, doi:https://doi.org/10.5194/amt-6-511-2013, 2013.
- 687 Katich, J. M., Samset, B. H., Bui, T. P., Dollner, M., Froyd, K. D., Campuzano-Jost, P., Nault, B. A.,
- Schroder, J. C., Weinzierl, B. and Schwarz, J. P.: Strong Contrast in Remote Black Carbon Aerosol
- 689 Loadings Between the Atlantic and Pacific Basins, Journal of Geophysical Research:
- 690 Atmospheres, 123(23), 13,386-13,395, doi:10.1029/2018JD029206, 2018.
- 691 Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J., Grassl, H. and Ramanathan, V.:
- 692 Observations of Near-Zero Ozone Concentrations Over the Convective Pacific: Effects on Air
- 693 Chemistry, Science, 274(5285), 230–233, doi:10.1126/science.274.5285.230, 1996.
- Komhyr, W.: Electrochemical Concentration Cells for Gas Analysis, Annales De Geophysique,25(1), 203-, 1969.
- 696 Krishnamurti, T. N., Sinha, M. C., Kanamitsu, M., Oosterhof, D., Fuelberg, H., Chatfield, R., Jacob,
- 697 D. J. and Logan, J.: Passive tracer transport relevant to the TRACE A experiment, Journal of
- 698 Geophysical Research: Atmospheres, 101(D19), 23889–23907, doi:10.1029/95JD02419, 1996.
- Leonard, M., Petropavlovskikh, I., Lin, M., McClure-Begley, A., Johnson, B. J., Oltmans, S. J. and
- 700 Tarasick, D.: An assessment of 10-year NOAA aircraft-based tropospheric ozone profiling in

- 701 Colorado, Atmospheric Environment, 158, 116–127, doi:10.1016/j.atmosenv.2017.03.013,
- 702 2017.
- 703 Levy, H.: Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted,
- 704 Science, 173(3992), 141–143, doi:10.1126/science.173.3992.141, 1971.
- Lin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Oltmans, S. J., Tarasick, D. and Rieder, H.
- 706 E.: Climate variability modulates western US ozone air quality in spring via deep stratospheric
- 707 intrusions, Nature Communications, 6, 7105, doi:10.1038/ncomms8105, 2015.
- Lin, M., Horowitz, L. W., Payton, R., Fiore, A. M. and Tonnesen, G.: US surface ozone trends and
 extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls,
 wildfires, and climate, Atmospheric Chemistry and Physics, 17(4), 2943–2970, doi:10.5194/acp17-2943-2017, 2017.
- Liu, G., Tarasick, D. W., Fioletov, V. E., Sioris, C. E. and Rochon, Y. J.: Ozone correlation lengths
- 713 and measurement uncertainties from analysis of historical ozonesonde data in North America
- 714 and Europe, Journal of Geophysical Research: Atmospheres, 114(D4),
- 715 doi:10.1029/2008JD010576, 2009.
- Liu, G., Liu, J., Tarasick, D. W., Fioletov, V. E., Jin, J. J., Moeini, O., Liu, X., Sioris, C. E. and Osman,
- 717 M.: A global tropospheric ozone climatology from trajectory-mapped ozone soundings,
- Atmospheric Chemistry and Physics, 13(21), 10659–10675, doi:10.5194/acp-13-10659-2013,
 2013.
- Liu, H., Jacob, D. J., Chan, L. Y., Oltmans, S. J., Bey, I., Yantosca, R. M., Harris, J. M., Duncan, B. N.
- and Martin, R. V.: Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of
- ozonesonde observations, Journal of Geophysical Research: Atmospheres, 107(D21), ACH 3-1 ACH 3-19, doi:10.1029/2001JD002005, 2002.
- Marenco, A., Thouret, V., Nédélec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law,
 K., Pyle, J., Poschmann, G., Wrede, R. V., Hume, C. and Cook, T.: Measurement of ozone and
 water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview, Journal
 of Geophysical Research: Atmospheres, 103(D19), 25631–25642, doi:10.1029/98JD00977,
 1998.
- 729 Martín, M. V., Honrath, R. E., Owen, R. C., Pfister, G., Fialho, P. and Barata, F.: Significant
- rad enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower free
- 731 troposphere resulting from North American boreal wildfires, Journal of Geophysical Research:
- 732 Atmospheres, 111(D23), doi:10.1029/2006JD007530, 2006.
- 733 Monks, P. S.: A review of the observations and origins of the spring ozone maximum,
- 734 Atmospheric Environment, 34(21), 3545–3561, doi:10.1016/S1352-2310(00)00129-1, 2000.
- 735 Monks, P. S., Carpenter, L. J., Penkett, S. A., Ayers, G. P., Gillett, R. W., Galbally, I. E. and (Mick)
- 736 Meyer, C. P.: Fundamental ozone photochemistry in the remote marine boundary layer: the

- 737 soapex experiment, measurement and theory, Atmospheric Environment, 32(21), 3647–3664,
- 738 doi:10.1016/S1352-2310(98)00084-3, 1998.
- 739 Monks, P. S., Salisbury, G., Holland, G., Penkett, S. A. and Ayers, G. P.: A seasonal comparison of
- ozone photochemistry in the remote marine boundary layer, Atmospheric Environment, 34(16),
- 741 2547–2561, doi:10.1016/S1352-2310(99)00504-X, 2000.
- 742 Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov,
- A., Baltensperger, U., Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F.,
- 744 Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson,
- 745 H. C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S. A., Jenkin, M. E.,
- 746 Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj, P., Lawrence, M. G., Lee, J. D., Liousse, C.,
- 747 Maione, M., McFiggans, G., Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O'Dowd,
- 748 C. D., Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Pöschl, U., Prévôt, A. S. H., Reeves, C. E.,
- 749 Reimann, S., Rudich, Y., Sellegri, K., Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van
- der Werf, G. R., Vautard, R., Vestreng, V., Vlachokostas, Ch. and von Glasow, R.: Atmospheric
 composition change global and regional air quality, Atmospheric Environment, 43(33), 5268–
- 752 5350, doi:10.1016/j.atmosenv.2009.08.021, 2009.
- 753 Moxim, W. J. and Levy, H.: A model analysis of the tropical South Atlantic Ocean tropospheric
- 754 ozone maximum: The interaction of transport and chemistry, Journal of Geophysical Research:
 755 Atmospheres, 105(D13), 17393–17415, doi:10.1029/2000JD900175, 2000.
- 756 Nath, D., Chen, W., Graf, H.-F., Lan, X., Gong, H., Nath, R., Hu, K. and Wang, L.: Subtropical
- 757 Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central
- 758 Pacific, Scientific Reports, 6, 21370, doi:10.1038/srep21370, 2016.
- 759 Nédélec, P., Cammas, J.-P., Thouret, V., Athier, G., Cousin, J.-M., Legrand, C., Abonnel, C.,
- 760 Lecoeur, F., Cayez, G. and Marizy, C.: An improved infrared carbon monoxide analyser for
- routine measurements aboard commercial Airbus aircraft: technical validation and first
- 762 scientific results of the MOZAIC III programme, Atmospheric Chemistry and Physics, 3(5), 1551–
- 763 1564, doi:https://doi.org/10.5194/acp-3-1551-2003, 2003.
- 764 Nédélec, P., Blot, R., Boulanger, D., Athier, G., Cousin, J.-M., Gautron, B., Petzold, A., Volz-
- 765 Thomas, A. and Thouret, V.: Instrumentation on commercial aircraft for monitoring the
- 766 atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and
- 767 carbon monoxide measurements, Tellus B: Chemical and Physical Meteorology, 68(s1), 27791,
- 768 doi:10.3402/tellusb.v67.27791, 2015.
- 769 Neuman, J. A., Trainer, M., Aikin, K. C., Angevine, W. M., Brioude, J., Brown, S. S., de Gouw, J. A.,
- 770 Dube, W. P., Flynn, J. H., Graus, M., Holloway, J. S., Lefer, B. L., Nedelec, P., Nowak, J. B., Parrish,
- 771 D. D., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Smit, H., Thouret, V. and Wagner, N. L.:
- 772 Observations of ozone transport from the free troposphere to the Los Angeles basin, Journal of
- 773 Geophysical Research: Atmospheres, 117(D21), n/a-n/a, doi:10.1029/2011JD016919, 2012.

- 774 Newell, R. E. and Evans, M. J.: Seasonal changes in pollutant transport to the North Pacific: The
- relative importance of Asian and European sources, Geophysical Research Letters, 27(16),
- 776 2509–2512, doi:10.1029/2000GL011501, 2000.
- 777 Oltmans, S. J., Johnson, B. J., Harris, J. M., Vömel, H., Thompson, A. M., Koshy, K., Simon, P.,
- 778 Bendura, R. J., Logan, J. A., Hasebe, F., Shiotani, M., Kirchhoff, V. W. J. H., Maata, M., Sami, G.,
- 779 Samad, A., Tabuadravu, J., Enriquez, H., Agama, M., Cornejo, J. and Paredes, F.: Ozone in the
- 780 Pacific tropical troposphere from ozonesonde observations, Journal of Geophysical Research:
- 781 Atmospheres, 106(D23), 32503–32525, doi:10.1029/2000JD900834, 2001.
- 782 Oltmans, S. J., Lefohn, A. S., Shadwick, D., Harris, J. M., Scheel, H. E., Galbally, I., Tarasick, D. W.,
- 783 Johnson, B. J., Brunke, E.-G., Claude, H., Zeng, G., Nichol, S., Schmidlin, F., Davies, J., Cuevas, E.,
- 784 Redondas, A., Naoe, H., Nakano, T. and Kawasato, T.: Recent tropospheric ozone changes A
- 785 pattern dominated by slow or no growth, Atmospheric Environment, 67, 331–351,
- 786 doi:10.1016/j.atmosenv.2012.10.057, 2013.
- Owen, R. C., Cooper, O. R., Stohl, A. and Honrath, R. E.: An analysis of the mechanisms of North
 American pollutant transport to the central North Atlantic lower free troposphere, Journal of
 Geophysical Research: Atmospheres, 111(D23), doi:10.1029/2006JD007062, 2006.
- 790 Pan, L. L., Honomichl, S. B., Randel, W. J., Apel, E. C., Atlas, E. L., Beaton, S. P., Bresch, J. F.,
- 791 Hornbrook, R., Kinnison, D. E., Lamarque, J.-F., Saiz-Lopez, A., Salawitch, R. J. and Weinheimer,
- 792 A. J.: Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed
- by airborne observations, Geophysical Research Letters, 42(18), 7844–7851,
- 794 doi:10.1002/2015GL065562, 2015.
- Parrish, Galbally I. E., Lamarque J.-F., Naik V., Horowitz L., Shindell D. T., Oltmans S. J., Derwent
- 796 R., Tanimoto H., Labuschagne C. and Cupeiro M.: Seasonal cycles of O3 in the marine boundary
- 797 layer: Observation and model simulation comparisons, Journal of Geophysical Research:
- 798 Atmospheres, 121(1), 538–557, doi:10.1002/2015JD024101, 2016.
- Perkins, S. E., Pitman, A. J., Holbrook, N. J. and McAneney, J.: Evaluation of the AR4 Climate
- $800 \qquad {\sf Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation}$
- 801 over Australia Using Probability Density Functions, J. Climate, 20(17), 4356–4376,
- 802 doi:10.1175/JCLI4253.1, 2007.
- 803 Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M., Gallagher, M., Hermann,
- M., Pontaud, M., Ziereis, H., Boulanger, D., Marshall, J., Nédélec, P., Smit, H. G. J., Friess, U.,
- 805 Flaud, J.-M., Wahner, A., Cammas, J.-P., Volz-Thomas, A. and TEAM, I.: Global-scale atmosphere
- 806 monitoring by in-service aircraft current achievements and future prospects of the European
- 807 Research Infrastructure IAGOS, Tellus B: Chemical and Physical Meteorology, 67(1), 28452,
- 808 doi:10.3402/tellusb.v67.28452, 2015.
- 809 Pickering, K. E., Thompson, A. M., Wang, Y., Tao, W.-K., McNamara, D. P., Kirchhoff, V. W. J. H.,
- 810 Heikes, B. G., Sachse, G. W., Bradshaw, J. D., Gregory, G. L. and Blake, D. R.: Convective

- 811 transport of biomass burning emissions over Brazil during TRACE A, Journal of Geophysical
- 812 Research: Atmospheres, 101(D19), 23993–24012, doi:10.1029/96JD00346, 1996.
- 813 Proffitt, M. H. and McLaughlin, R. J.: Fast-response dual-beam UV-absorption ozone
- 814 photometer suitable for use on stratospheric balloons, Review of Scientific Instruments, 54(12),
- 815 1719–1728, doi:10.1063/1.1137316, 1983.
- 816 Ridley, B. A., Grahek, F. E. and Walega, J. G.: A Small High-Sensitivity, Medium-Response Ozone
- 817 Detector Suitable for Measurements from Light Aircraft, J. Atmos. Oceanic Technol., 9(2), 142–
- 818 148, doi:10.1175/1520-0426(1992)009<0142:ASHSMR>2.0.CO;2, 1992.
- 819 Santoni, G. W., Daube, B. C., Kort, E. A., Jiménez, R., Park, S., Pittman, J. V., Gottlieb, E., Xiang,
- 820 B., Zahniser, M. S., Nelson, D. D., McManus, J. B., Peischl, J., Ryerson, T. B., Holloway, J. S.,
- 821 Andrews, A. E., Sweeney, C., Hall, B., Hintsa, E. J., Moore, F. L., Elkins, J. W., Hurst, D. F.,
- 822 Stephens, B. B., Bent, J. and Wofsy, S. C.: Evaluation of the airborne quantum cascade laser
- 823 spectrometer (QCLS) measurements of the carbon and greenhouse gas suite CO₂, CH₄,
- 824 N₂O, and CO – during the CalNex and HIPPO campaigns, Atmospheric Measurement
- 825 Techniques, 7(6), 1509–1526, doi:https://doi.org/10.5194/amt-7-1509-2014, 2014.
- 826 Sauvage, B., Thouret, V., Thompson, A. M., Witte, J. C., Cammas, J.-P., Nédélec, P. and Athier,
- 827 G.: Enhanced view of the "tropical Atlantic ozone paradox" and "zonal wave one" from the in
- situ MOZAIC and SHADOZ data, Journal of Geophysical Research: Atmospheres, 111(D1),
 doi:10.1029/2005JD006241, 2006.
- 830 Shen, Z., Liu, J., Horowitz, L. W., Henze, D. K., Fan, S., H., L. I., Mauzerall, D. L., Lin, J.-T. and Tao,

831 S.: Analysis of transpacific transport of black carbon during HIPPO-3: implications for black

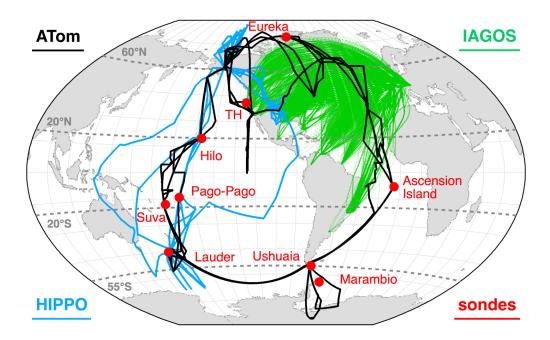
- carbon aging, Atmospheric Chemistry and Physics, 14(12), 6315–6327, doi:10.5194/acp-146315-2014, 2014.
- 834 Shindell, D., Kuylenstierna, J. C. I., Vignati, E., Dingenen, R. van, Amann, M., Klimont, Z.,
- 835 Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli,
- L., Kupiainen, K., Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K.,
- 837 Oanh, N. T. K., Milly, G., Williams, M., Demkine, V. and Fowler, D.: Simultaneously Mitigating
- 838 Near-Term Climate Change and Improving Human Health and Food Security, Science,
- 839 335(6065), 183–189, doi:10.1126/science.1210026, 2012.
- 840 Solomon, S., Thompson, D. W. J., Portmann, R. W., Oltmans, S. J. and Thompson, A. M.: On the
- 841 distribution and variability of ozone in the tropical upper troposphere: Implications for tropical
- deep convection and chemical-dynamical coupling, Geophysical Research Letters, 32(23),
 doi:10.1029/2005GL024323, 2005.
- 844 Stauffer, R. M., Thompson, A. M. and Witte, J. C.: Characterizing Global Ozon
- Stauffer, R. M., Thompson, A. M. and Witte, J. C.: Characterizing Global Ozonesonde Profile
 Variability From Surface to the UT/LS With a Clustering Technique and MERRA-2 Reanalysis,
- Journal of Geophysical Research: Atmospheres, 123(11), 6213–6229,
- 847 doi:10.1029/2018JD028465, 2018.

- 848 Stedman, D. H., Daby, E. E., Stuhl, F. and Niki, H.: Analysis of Ozone and Nitric Oxide by a
- 849 Chemiluminescent Method in Laboratory and Atmospheric Studies of Photochemical Smog,
- S50 Journal of the Air Pollution Control Association, 22(4), 260–263,
- 851 doi:10.1080/00022470.1972.10469635, 1972.
- Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T.
- J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O.,
- Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., Osman, M., Liu, J.,
- 855 Chang, K.-L., Gaudel, A., Lin, M., Granados-Muñoz, M., Thompson, A. M., Oltmans, S. J., Cuesta,
- J., Dufour, G., Thouret, V., Hassler, B., Trickl, T. and Neu, J. L.: Tropospheric Ozone Assessment
- 857 Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, Elem
- 858 Sci Anth, 7(1), 39, doi:10.1525/elementa.376, 2019a.
- Tarasick, D. W. and Bottenheim, J. W.: Surface ozone depletion episodes in the Arctic and
- 860 Antarctic from historical ozonesonde records, Atmospheric Chemistry and Physics, 2(3), 197–
- 861 205, doi:https://doi.org/10.5194/acp-2-197-2002, 2002.
- 862 Tarasick, D. W., Carey-Smith, T. K., Hocking, W. K., Moeini, O., He, H., Liu, J., Osman, M. K.,
- 863 Thompson, A. M., Johnson, B. J., Oltmans, S. J. and Merrill, J. T.: Quantifying stratosphere-
- 864 troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and
- trajectory models, Atmospheric Environment, 198, 496–509,
- 866 doi:10.1016/j.atmosenv.2018.10.040, 2019b.
- 867 Thompson, A. M., Johnson, J. E., Torres, A. L., Bates, T. S., Kelly, K. C., Atlas, E., Greenberg, J. P.,
- Bonahue, N. M., Yvon, S. A., Saltzman, E. S., Heikes, B. G., Mosher, B. W., Shashkov, A. A. and
- 869 Yegorov, V. I.: Ozone observations and a model of marine boundary layer photochemistry
- 870 during SAGA 3, Journal of Geophysical Research: Atmospheres, 98(D9), 16955–16968,
- 871 doi:10.1029/93JD00258, 1993.
- 872 Thompson, A. M., Pickering, K. E., McNamara, D. P., Schoeberl, M. R., Hudson, R. D., Kim, J. H.,
- 873 Browell, E. V., Kirchhoff, V. W. J. H. and Nganga, D.: Where did tropospheric ozone over
- southern Africa and the tropical Atlantic come from in October 1992? Insights from TOMS, GTE
- 875 TRACE A, and SAFARI 1992, Journal of Geophysical Research: Atmospheres, 101(D19), 24251–
- 876 24278, doi:10.1029/96JD01463, 1996.
- 877 Thompson, A. M., Doddridge, B. G., Witte, J. C., Hudson, R. D., Luke, W. T., Johnson, J. E.,
- S78 Johnson, B. J., Oltmans, S. J. and Weller, R.: A tropical Atlantic Paradox: Shipboard and satellite
- 879 views of a tropospheric ozone maximum and wave-one in January–February 1999, Geophysical
- 880 Research Letters, 27(20), 3317–3320, doi:10.1029/1999GL011273, 2000.
- 881 Thompson, A. M., Miller, S. K., Tilmes, S., Kollonige, D. W., Witte, J. C., Oltmans, S. J., Johnson,
- 882 B. J., Fujiwara, M., Schmidlin, F. J., Coetzee, G. J. R., Komala, N., Maata, M., Mohamad, M. B.,
- 883 Nguyo, J., Mutai, C., Ogino, S. Y., Silva, F. R. D., Leme, N. M. P., Posny, F., Scheele, R., Selkirk, H.
- 884 B., Shiotani, M., Stbi, R., Levrat, G., Calpini, B., Thouret, V., Tsuruta, H., Canossa, J. V., Vmel, H.,
- 885 Yonemura, S., Diaz, J. A., Thanh, N. T. T. and Ha, H. T. T.: Southern Hemisphere Additional

- 886 Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause
- 887 layer (TTL) profiles with comparisons to OMI-based ozone products, Journal of Geophysical
- 888 Research Atmospheres, 117(23), D23301, doi:10.1029/2011JD016911, 2012.
- 889 Thompson, A. M., Witte, J. C., Sterling, C., Jordan, A., Johnson, B. J., Oltmans, S. J., Fujiwara, M.,
- 890 Vömel, H., Allaart, M., Piters, A., Coetzee, G. J. R., Posny, F., Corrales, E., Diaz, J. A., Félix, C.,
- 891 Komala, N., Lai, N., Ahn Nguyen, H. T., Maata, M., Mani, F., Zainal, Z., Ogino, S., Paredes, F.,
- Penha, T. L. B., da Silva, F. R., Sallons-Mitro, S., Selkirk, H. B., Schmidlin, F. J., Stübi, R. and
- 893 Thiongo, K.: First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ)
- 894 Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments:
- 895 SHADOZ Data Evaluation, Journal of Geophysical Research: Atmospheres,
- 896 doi:10.1002/2017JD027406, 2017.
- Thompson, A. M., Smit, H. G. J., Witte, J. C., Stauffer, R. M., Johnson, B. J., Morris, G., von der
- 898 Gathen, P., Van Malderen, R., Davies, J., Piters, A., Allaart, M., Posny, F., Kivi, R., Cullis, P., Hoang
- Anh, N. T., Corrales, E., Machinini, T., da Silva, F. R., Paiman, G., Thiong'o, K., Zainal, Z., Brothers,
- 900 G. B., Wolff, K. R., Nakano, T., Stübi, R., Romanens, G., Coetzee, G. J. R., Diaz, J. A., Mitro, S.,
- 901 Mohamad, M. and Ogino, S.-Y.: Ozonesonde Quality Assurance: The JOSIE–SHADOZ (2017)
- 902 Experience, Bull. Amer. Meteor. Soc., 100(1), 155–171, doi:10.1175/BAMS-D-17-0311.1, 2019.
- 903 Thompson, C. R., Ryerson, T. B., Peischl, J., Barletta, B., Blake, D. R., Butler, A. H., Crounse, J. D.,
- 904 Evans, M. J., Fisher, J. A., Huey, L. G., Kim, M. J., Laubach, A., Moore, F. L., Ray, E. A., Murray, L.
- 905 T., Sherwen, T., Strode, S. A., Wennberg, P. O. and Yu, P.: Global-scale Airborne Observations of
- 906 Tropospheric Reactive Nitrogen Species from the NASA Atmospheric Tomography Mission, AGU
- 907 Fall Meeting Abstracts, 14 [online] Available from:
- 908 http://adsabs.harvard.edu/abs/2017AGUFM.A14D..02T (Accessed 16 March 2020b), 2017.
- 909 Thouret, V., Marenco, A., Logan, J. A., Nédélec, P. and Grouhel, C.: Comparisons of ozone
- 910 measurements from the MOZAIC airborne program and the ozone sounding network at eight
- 911 locations, Journal of Geophysical Research: Atmospheres, 103(D19), 25695–25720,
- 912 doi:10.1029/98JD02243, 1998.
- 913 Tilmes, S., Lamarque, J.-F., Emmons, L. K., Conley, A., Schultz, M. G., Saunois, M., Thouret, V.,
- 914 Thompson, A. M., Oltmans, S. J., Johnson, B. and Tarasick, D.: Technical Note: Ozonesonde

915 climatology between 1995 and 2011: description, evaluation and applications, Atmospheric

- 916 Chemistry and Physics, 12(16), 7475–7497, doi:https://doi.org/10.5194/acp-12-7475-2012,
- 917 2012.
- Trickl, T., Cooper, O. R., Eisele, H., James, P., Mücke, R. and Stohl, A.: Intercontinental transport
 and its influence on the ozone concentrations over central Europe: Three case studies, Journal
 of Geophysical Research: Atmospheres, 108(D12), doi:10.1029/2002JD002735, 2003.
- 921 Williams, J. E., Scheele, M. P., van Velthoven, P. F. J., Thouret, V., Saunois, M., Reeves, C. E. and
- 922 Cammas, J.-P.: The influence of biomass burning and transport on tropospheric composition
- 923 over the tropical Atlantic Ocean and Equatorial Africa during the West African monsoon in



924 2006, Atmospheric Chemistry and Physics, 10(20), 9797–9817, doi:10.5194/acp-10-9797-2010,
925 2010.

- 926 Witte, J. C., Thompson, A. M., Smit, H. G. J., Vömel, H., Posny, F. and Stübi, R.: First
- 927 Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty
- 928 in Ozone Profile and Total Column, Journal of Geophysical Research: Atmospheres, 123(6),
- 929 3243–3268, doi:10.1002/2017JD027791, 2018.
- 930 Wofsy, S. C.: HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale
- 931 measurements of climatically important atmospheric gases and aerosols, Philosophical
- 932 Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
- 933 369(1943), 2073–2086, doi:10.1098/rsta.2010.0313, 2011.
- 934 Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes,
- 935 S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren,
- 936 S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I.
- 937 A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode,
- 938 S. A., Sudo, K., Szopa, S. and Zeng, G.: Pre-industrial to end 21st century projections of
- 939 tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison
- 940 Project (ACCMIP), Atmos. Chem. Phys., 13(4), 2063–2090, doi:10.5194/acp-13-2063-2013,
- 941 2013.
- 942 Zhang, B., Owen, R. C., Perlinger, J. A., Helmig, D., Martín, M. V., Kramer, L., Mazzoleni, L. R. and
- 943 Mazzoleni, C.: Ten-year chemical signatures associated with long-range transport observed in
- 944 the free troposphere over the central North Atlantic, Elem Sci Anth, 5(0),
- 945 doi:10.1525/elementa.194, 2017.
- 246 Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K. W., Worden, J. R.,
- 947 Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E., Flock, F. M., Fuelberg, H. E., Huey, L. G.,
- 948 McMillan, W. W., Singh, H. B. and Weinheimer, A. J.: Transpacific transport of ozone pollution
- 949 and the effect of recent Asian emission increases on air quality in North America: an integrated
- 950 analysis using satellite, aircraft, ozonesonde, and surface observations, Atmospheric Chemistry
- 951 and Physics, 8(20), 6117–6136, doi:https://doi.org/10.5194/acp-8-6117-2008, 2008.
- 952

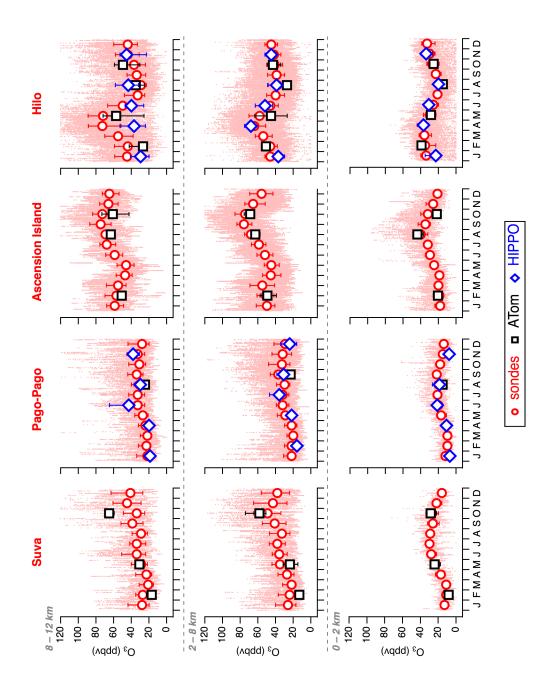


Figure 1 The location and flight tracks of all O₃ monitoring platforms used in this work are illustrated with different markers and colors. The ATom flight track is in black, the HIPPO flight track is in blue, IAGOS flight paths are in green, and the ozonesonde launching sites are indicated by the red markers. The dotted grey lines define the latitudinal bands over which individual ATom and HIPPO profiles were averaged to derive a regional O₃ distribution: the tropics (20° S – 20° N), the midlatitudes (55° S – 20° S; 20° N – 60° N), and the high-latitudes (90° S – 55° S; 60° N – 90° N). Only data from remote oceanic flight segments of ATom and HIPPO missions were used in this work.

32–52

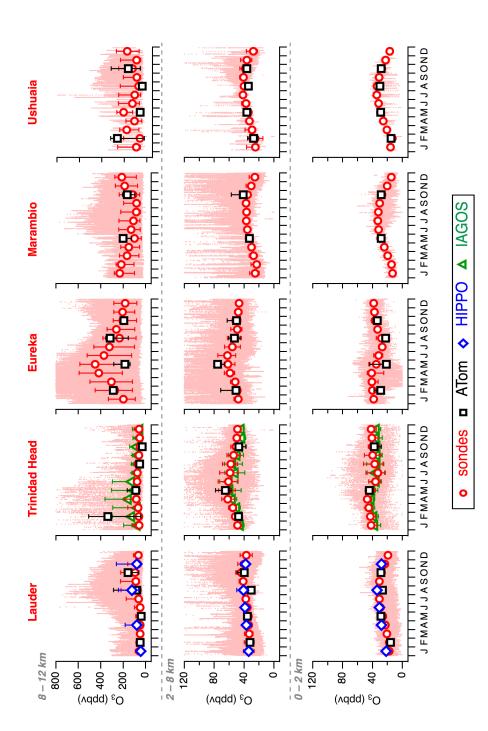


Figure 2 Comparison of ATom (black squares) and HIPPO (blue diamonds) monthly median O_3 with ozonesonde (red circles) records from the four tropical sites. Markers indicate the median and the bars indicate the 25th and 75th percentiles. The three rows, from bottom to top, correspond to the boundary layer (0–2 km), the free troposphere (2–8 km), and the UTLS (8–12 km). The pink dots show every O_3 data point measured by ozonesondes for the timeframes indicated in Table S2.

34–52

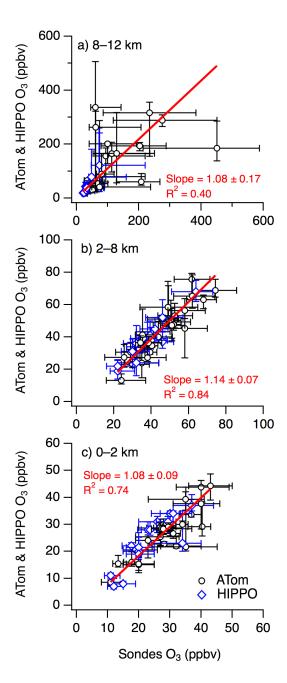
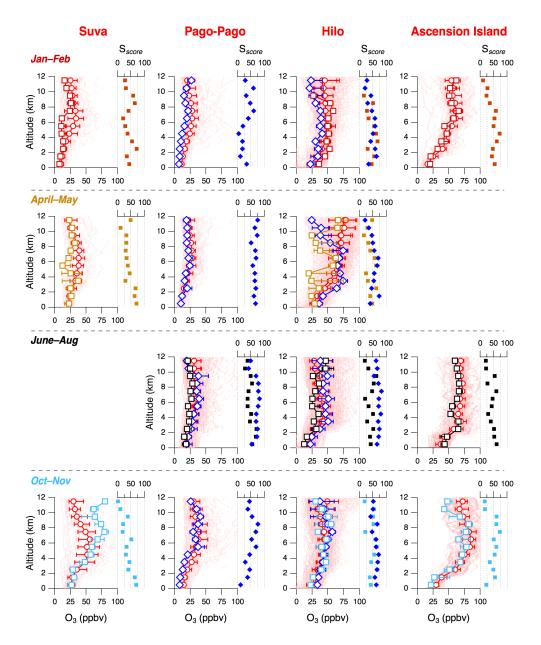


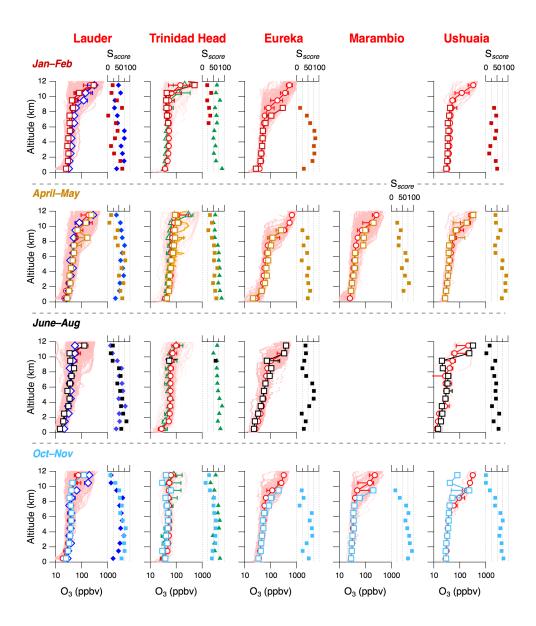
Figure 3 Same as in Figure 2 but for ozonesonde launching sites located in the middle- and highlatitudes. O_3 data obtained from the IAGOS program (green triangles) during descents into San Francisco Bay-area airports were also added to the Trinidad Head site for comparison.

Figure 4 ATom (black circles) and HIPPO (blue diamonds) combined monthly median O_3 vs. monthly median O_3 from ozonesondes at the nine sites considered in this study. The three panels



indicate the correlations for a) the UTLS (8-12 km), b) the free troposphere (2-8 km), and c) the boundary layer (0-2 km). The orthogonal regression fits are two-sided but not weighted.

Figure 5 Seasonal comparison of 1 km-vertically-binned ATom (colored squares) and HIPPO (blue diamonds) median O_3 with ozonesonde (red circles) records at four sites in the tropics (Suva in Fiji, Pago-Pago in American Samoa, Hilo in Hawaii, and Ascension Island). Markers indicate the median and the bars are the 25th and 75th percentiles. The S_{score} is a metric of how well ATom



and HIPPO 1 km-binned O_3 probability distribution functions (PDFs) overlap with the corresponding 1 km-binned O_3 PDFs from ozonesondes. The S_{score} shown with squares compares ATom with ozonesondes, and the S_{score} shown with blue diamonds compares HIPPO with ozonesondes. The pink dots show every O_3 data point measured by ozonesondes for the timeframes indicated in Table S2.

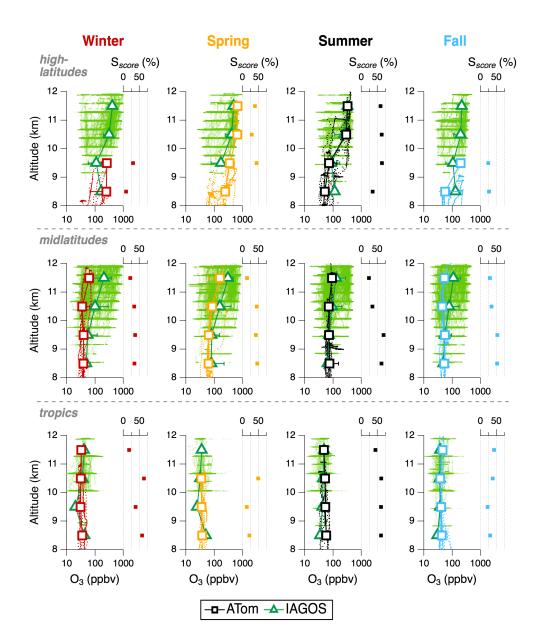


Figure 6 Same as in Figure 5 but for ozonesonde launching sites located in middle- and highlatitudes (Lauder in New Zealand, Trinidad Head in the USA, Eureka in Canada, Ushuaia in Argentina, and Marambio in Antarctica). O₃ data obtained from the IAGOS program (green triangles) during descents into San Francisco Bay-area nearby airports were also added to the Trinidad Head site for comparison.

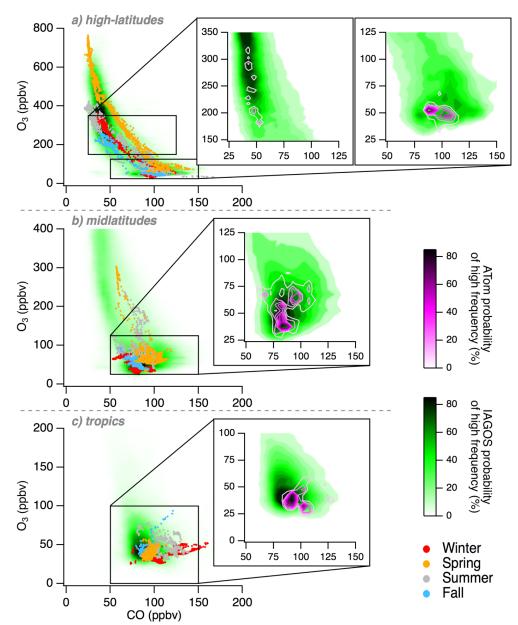
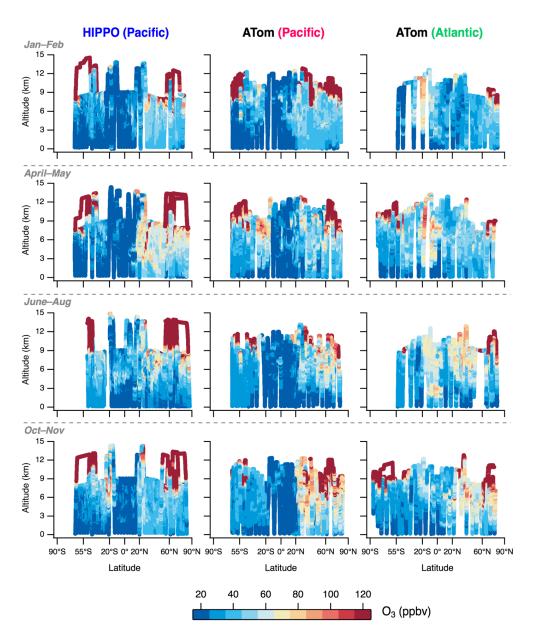


Figure 7 Seasonal comparison of 1 km-binned ATom (colored squares) median O_3 with IAGOS (green triangles) in the northern Atlantic UTLS. Markers indicate the median and the bars are the 25^{th} and 75^{th} percentiles. The three different rows indicate the latitudinal bands. The four columns

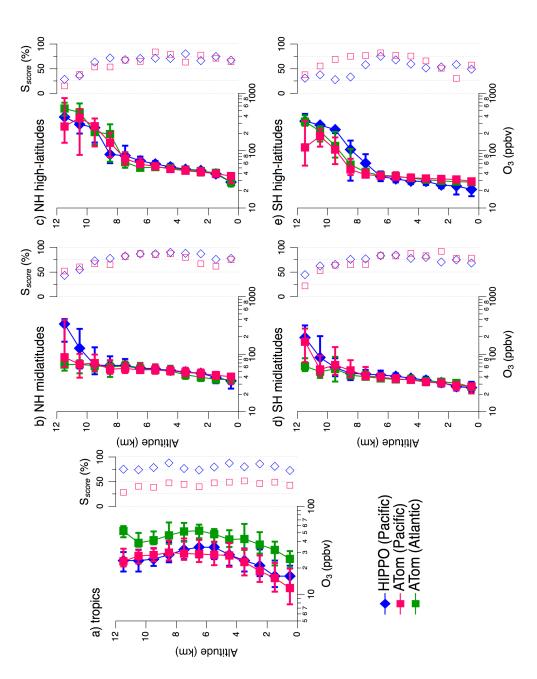
indicate the seasons. The green dots show every O_3 data point measured by IAGOS flights for the timeframe indicated in Table S1.

Figure 8 IAGOS and ATom seasonal O₃ vs. CO scatterplots, with insets showing the most frequent O₃ values measured during IAGOS and ATom. ATom seasonal deployments are



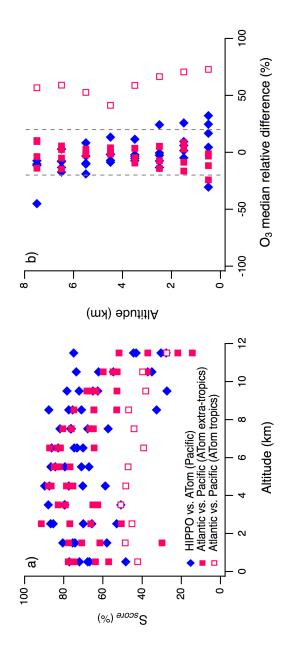
colored according to the legend. The frequency gradient of O_3 counts is illustrated by the color scales (green for IAGOS, magenta for ATom). ATom measurements have been combined for the frequency gradients shown in the insets. The probability of high frequency refers to the probability of finding frequently measured O_3 values within the contour boundaries

Figure 9 Global-scale distribution of tropospheric O_3 for each ATom and HIPPO seasonal deployment. The rows separate the seasonal deployments, while the columns indicate the mission and the ocean basin. The O_3 color-scale ranges from 20 to 120 ppbv, and all values outside of this



range are shown with the same extremum color (red for values > 120 ppbv, blue for values < 20 ppbv). HIPPO deployments in June and August were combined together.

Figure 10 Vertically-resolved O_3 distributions from 0–12 km are plotted for the Atlantic (ATom in green) and for the Pacific (ATom in pink, HIPPO in blue). The five broad latitude regions correspond to the data parsing illustrated by Fig. 1. Markers indicate median O_3 , and bars are the



 25^{th} and 75^{th} percentiles, per 1 km altitude bin. Note the log scale on the x-axis. S_{score} values resulting from the comparison of HIPPO and ATom Pacific distributions are shown with blue diamonds, and from the comparison of ATom Atlantic and Pacific distributions with pink squares.

Figure 11 All S_{score} values from Fig. 10 are shown in panel a) and plotted against altitude. The HIPPO and ATom comparison in the Pacific basin is shown with blue diamonds, and a comparison of the Atlantic and Pacific basins during ATom is shown with filled pink squares for the extra-

tropics and open pink squares for the tropics. The relative difference of median O_3 from 0 to 8 km given in Fig. 10 is shown in panel b), with the same color and marker code as in panel a). The dotted grey lines indicate a relative difference of 20 %.

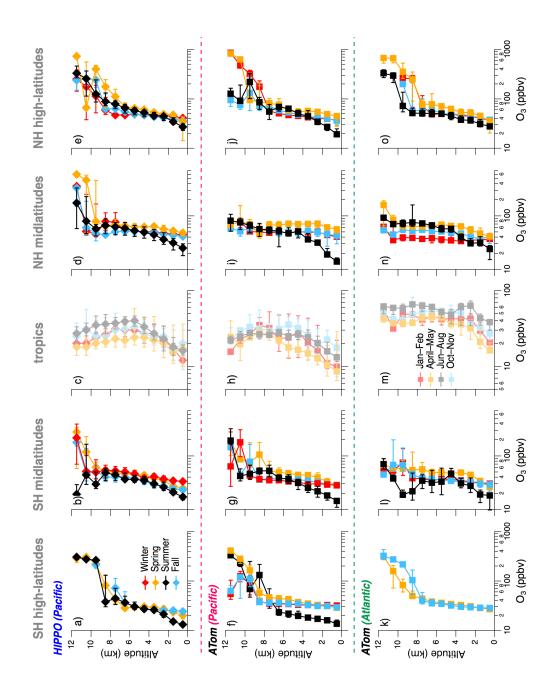
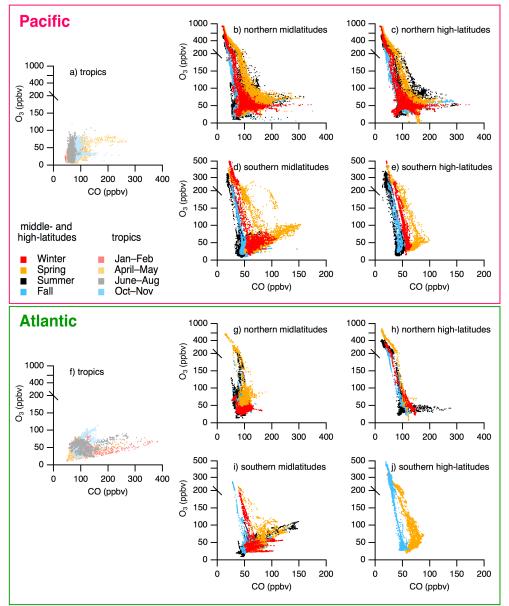


Figure 12 Seasonal variability of regional O_3 distribution in the Pacific (HIPPO in the first and ATom in the second row) and in the Atlantic (ATom in the third row). The colors designate the



local seasons with red as winter, gold as spring, black as summer, and blue as fall (corresponding months are indicated for the tropics, with lighter colors). The markers and associated bars correspond to the median, 25th and 75th percentiles, respectively, of O₃ distribution in every 1 km altitude bin. Note the logarithmic scale on the x-axes in all panels, and the changing scale with latitudinal bin.

Figure 13 O₃ vs. CO plots using combined ATom and HIPPO data. Each panel denotes a different latitudinal band in each basin. Seasonal deployments are colored according to the legend. Note the logarithmic scale on the y-axes in all panels, and the changing scale with latitudinal bin

